DOI QR코드

DOI QR Code

Identification of a Bioactive Compound, Violacein, from Microbulbifer sp. Isolated from a Marine Sponge Hymeniacidon sinapium on the West Coast of Korea

한국 서해안에 서식하는 주황해변해면에서 분리된 해양세균 Microbulbifer sp.으로부터 생리활성물질 비올라세인의 규명

  • Won, Nam-Il (Water Resources Research Center, K-water Institute) ;
  • Lee, Ga-Eun (Department of Bioscience and Biotechnology, Hannam University) ;
  • Ko, Keebeom (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Oh, Dong-Chan (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Na, Yang Ho (Department of Advanced Materials, Hannam University) ;
  • Park, Jin-Sook (Department of Bioscience and Biotechnology, Hannam University)
  • 원남일 (한국수자원공사 K-water연구원) ;
  • 이가은 (한남대학교 생명시스템과학과) ;
  • 고기범 (서울대학교 약학대학 천연물과학연구소) ;
  • 오동찬 (서울대학교 약학대학 천연물과학연구소) ;
  • 나양호 (한남대학교 신소재공학과) ;
  • 박진숙 (한남대학교 생명시스템과학과)
  • Received : 2017.02.10
  • Accepted : 2017.03.28
  • Published : 2017.06.28

Abstract

Microbial secondary metabolites of marine organisms are regarded as major sources of structurally and biologically novel compounds with numerous potential uses. Sponge-microbe associations are among the most interesting sources for exploring bioactive compounds. In this study, the bacterial strain Microbulbifer sp. (127CP7-12) was isolated from the Asian marine sponge Hymeniacidon sinapium collected at an intertidal zone on the west coast of Korea. Cultured bacteria produced a violet pigment, and optimal culture conditions for violet pigment production were investigated. Maximum production of the violet pigment from the strain culture was observed under the conditions of $25^{\circ}C$, pH 6.0, and 3% NaCl. Acetone provided better extraction of the pigment from fermented broth compared with ethanol and methanol. The proposed structure of the major component in the extracted crude pigment was determined via high-performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, and UV spectra analyses, which showed that the metabolite was the promising bioactive compound violacein. This study describes the examination of marine bioactive materials from microbe-engaged metabolites and the ecological implications of the sponge-microbe association in a changing ocean.

오늘날 해양생물로부터 얻어진 미생물유래의 이차대사물질은 구조적, 생물학적으로 새로운 화합물의 주요한 자원이다. 그 중에서 해면동물과 미생물 관계는 생리활성 물질을 탐색하는데 가장 흥미있는 자원 중 하나로서 주목받아 왔다. 본 연구에서는 서해안 조간대에서 채집된 주황해변해면(Hymeniacidon sinapium)으로부터 분리된 세균 균주(Microbulbifer sp., 127CP-12)를 검토하였다. 배양된 세균은 자주색 색소를 생산하였으며, 색소생산의 최적 배양조건을 조사하였다. 최대 색소생산을 위한 미생물 배양조건은 $25^{\circ}C$, pH 6.0, 3% NaCl임을 알 수 있었다. 추출용매는 에탄올과 메탄올에 비해 아세톤이 더 적절한 것으로 나타났다. 추출된 색소의 주요성분은 HLPC, NMR, MS, 그리고 UV 스펙트럼의 구조 분석을 통해 유용한 생리활성물질인 비올라세인으로 밝혀졌다. 본 연구는 해양미생물이 관여한 대사물질로부터 생리활성물질을 조사하는 연구기법을 서술함과 동시에 오늘날 변화하는 해양환경에서 해면동물과 미생물 관계의 생태학적 의의를 제시하고 있다.

Keywords

References

  1. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, et al. 2008. A global map of human impact on marine ecosystems. Science 319: 948-952. https://doi.org/10.1126/science.1149345
  2. Belkin IM. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81: 207-213. https://doi.org/10.1016/j.pocean.2009.04.011
  3. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, et al. 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919-925. https://doi.org/10.1038/nclimate1958
  4. Moran XAG, Alonso-Saez L, Nogueira E, Ducklow HW, Gonzalez N, Lopez-Urrutia A, et al. 2015. Presented at the Proc. R. Soc. B.
  5. Barton AD, Irwin AJ, Finkel ZV, Stock CA. 2016. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences 113: 2964-2969. https://doi.org/10.1073/pnas.1519080113
  6. Dias DA, Urban S, Roessner U. 2012. A historical overview of natural products in drug discovery. Metabolites 2: 303-336. https://doi.org/10.3390/metabo2020303
  7. Harvey AL, Edrada-Ebel R, Quinn RJ. 2015. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery 14: 111-129. https://doi.org/10.1038/nrd4510
  8. D'Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. 2012. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Marine Drugs 10: 812-833. https://doi.org/10.3390/md10040812
  9. Skropeta D, Wei L. 2014. Recent advances in deep-sea natural products. Natural Product Reports 31: 999-1025. https://doi.org/10.1039/C3NP70118B
  10. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Scientific Reports 5: 15598. https://doi.org/10.1038/srep15598
  11. Laport MS, Santos OC, Muricy G. 2009. Marine sponges: potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 10: 86-105. https://doi.org/10.2174/138920109787048625
  12. El-Shitany NA, Shaala LA, Abbas AT, Abdel-Dayem UA, Azhar EI, Ali SS, et al. 2015. Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the red sea marine sponge xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One 10: e0138917. https://doi.org/10.1371/journal.pone.0138917
  13. Li Z. 2009. Advances in marine microbial symbionts in the china sea and related pharmaceutical metabolites. Marine Drugs 7: 113-129. https://doi.org/10.3390/md7020113
  14. Matz C, Kjelleberg S. 2005. Off the hook--how bacteria survive protozoan grazing. Trends Microbiol. 13: 302-307. https://doi.org/10.1016/j.tim.2005.05.009
  15. Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, et al. 2008. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 3: e2744. https://doi.org/10.1371/journal.pone.0002744
  16. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5: e77. https://doi.org/10.1371/journal.pbio.0050077
  17. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. 2007. CAMERA: a community resource for metagenomics. PLoS Biology 5: e75. https://doi.org/10.1371/journal.pbio.0050075
  18. Park MH, Sim CJ, Baek J, Min GS. 2007. Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol. Cells 23: 220-227.
  19. Hoshino S, Saito DS, Fujita T. 2008. Contrasting genetic structure of two Pacific Hymeniacidon species. Hydrobiologia 603: 313-326. https://doi.org/10.1007/s10750-008-9295-2
  20. Fuller T, Hughey J. 2013. Molecular investigation of the invasive sponge Hymeniacidon sinapium (de Laubenfels, 1930) in Elkhorn Slough, California. Aquatic Invasions 8: 59-66. https://doi.org/10.3391/ai.2013.8.1.07
  21. Jeong J-B, Park J-S. 2012. Seasonal differences of bacterial communities associated with the marine sponge, hymeniacidon sinapium. The Korean J. Microbiol. 48: 262-269. https://doi.org/10.7845/kjm.2012.063
  22. Yang LH, Xiong H, Lee OO, Qi SH, Qian PY. 2007. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett. Appl. Microbiol. 44: 625-630. https://doi.org/10.1111/j.1472-765X.2007.02125.x
  23. Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M. 1990. Salinicoccus roseus gen. nov., sp. nov., a New Moderately Halophilic Gram-Positive Coccus. Syst. Appl. Microbiol. 13: 29-33. https://doi.org/10.1016/S0723-2020(11)80177-3
  24. Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S. 2012. Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 23: 93-105. https://doi.org/10.1007/s10532-011-9489-6
  25. Rettori D, Duran N. 1998. Production, extraction and purificationof violacein: an antibiotic pigment producedby Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14: 685-688. https://doi.org/10.1023/A:1008809504504
  26. Nakamura Y, Sawada T, Morita Y, Tamiya E. 2002. Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem. Eng. J. 12: 79-86. https://doi.org/10.1016/S1369-703X(02)00079-7
  27. Yoon JH, Kim H, Kang KH, Oh TK, Park YH. 2003. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int. J. Syst. Evol. Microbiol. 53: 1357-1361. https://doi.org/10.1099/ijs.0.02464-0
  28. Webster NS, Cobb RE, Negri AP. 2008. Temperature thresholds for bacterial symbiosis with a sponge. The ISME J. 2: 830-842. https://doi.org/10.1038/ismej.2008.42
  29. Goodwin C, Rodolfo-Metalpa R, Picton B, Hall-Spencer JM. 2014. Effects of ocean acidification on sponge communities. Mar. Ecol. 35: 41-49. https://doi.org/10.1111/maec.12093
  30. Das S, Mangwani N. 2015. Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57: 349-361. https://doi.org/10.1016/j.oceano.2015.07.003

Cited by

  1. Zooshikella sp. 17TA 색소 추출물의 물리화학적 안정성과 항균활성 vol.11, pp.2, 2017, https://doi.org/10.15433/ksmb.2019.11.2.089