DOI QR코드

DOI QR Code

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium

복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화

  • Yoo, Jangyeon (Department of Convergence Study on Ocean Science and Technology, Korea Institute of Ocean Science and Technology) ;
  • Kim, In-Soo (Department Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Soo-Hyeon (Department Civil and Environmental Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Ekpeghere, Kalu I. (Department Civil and Environmental Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Chang, Jae-Soo (Department Environmental Engineering, Korea Maritime and Ocean University) ;
  • Park, Young-In (Division of Public Health and Environment, Kosin University) ;
  • Koh, Sung-Cheol (Department Environmental Engineering, Korea Maritime and Ocean University)
  • 유장연 (한국해양과학기술전문대학원 해양과학기술융합학과) ;
  • 김인수 (한국해양대학교 환경공학과) ;
  • 김수현 (한국해양대학교 대학원 토목환경공학과) ;
  • 칼루 엑페게어 (한국해양대학교 대학원 토목환경공학과) ;
  • 장재수 (한국해양대학교 환경공학과) ;
  • 박영인 (고신대학교 보건환경학부) ;
  • 고성철 (한국해양대학교 환경공학과)
  • Received : 2017.06.09
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

부산시 영도구의 혁신지구의 인공해수천은 높아진 하상과 조류의 특성으로 인해 물이 순환되지 않고 더구나 주위의 오수가 유입되고 있어서 수질이 나빠지고 악취를 발생하고 있다. 이 문제를 해결하기 위한 방안으로 가장 오염되고 조류이동을 감안한 하천의 지점에 생물증강법을 적용하여 친환경적, 효율적으로 하천을 정화하고자 하였다. 현장에서 활성화된 복합미생물을 가장 오염된 지점(Site 2)에 7~10일 간격으로 투입하여, 수질의 pH, 온도, DO, ORP, SS, COD, T-N, 및 T-P를 측정하였고 또한 하상퇴적토의 COD 및 미생물군집을 분석하였다. 13개월 후 Site 2의 수질 SS, COD, T-N 및 COD (퇴적토)의 처리효율은 각각 51%, 58%, 27% 및 35%으로 나타났으나 T-P는 오히려 47% 증가를 보였다. 대부분의 측정지점에서 황산염환원세균(sulfate reducing bacteria)그룹 (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc and Desulfobacter postgatei)과 Anaerolinaeles의 밀도는 대체적으로 생물증강에 의한 정화가 진행될수록 감소하였으며, 반면에 Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, 및 Flavobacteriales_uc_s의 밀도는 증가하는 경향이었다. 상대적으로 COD가 낮고 DO가 높은 청정지점인 St. 4에서는 호기성미생물인 Flavobacteriaceae_uc_s가 우점하였다. 이러한 미생물군은 하천의 정화과정을 추적할 수 있는 지표미생물로 활용될 수 있을 것으로 판단되었다. 생물증강 시행 후의 대표적 시점 퇴적토시료의 미생물군집 alpha diversity 지수(OTUs, Chao1 및 Shannon 지수)는 시행 전에 비해 감소하는 경향을 보였으며, 또한 beta diversity 분석기법(fast unifrac 분석)으로 분석한 결과 정화 전이나 초기에 비해서 정화가 진행될수록 전반적으로 시료에 무관하게 미생물군집의 유사성을 보여 생물증강이 현장 토착 미생물의 군집구조를 변화시키고 있음을 확인하였다. 이러한 사실로 보아 본 복합미생물에 의한 현장 생물증강법은 brine water 및 담수로 이루어진 오염된 하천을 환경친화적, 경제적으로 정화할 수 있는 대안으로 판단이 되었다.

Keywords

References

  1. Ahn, T.W., Choi, I.S., and Oh, J.M. 2009. A study on the quality improvement of secondary treatment effluent utilize the natural purification method. Environ. Impact Assess. 18, 79-87.
  2. Ahn, S.E. and Kim, G. 2016. Economic values of freshwater ecosystem services from demand and supply perspectives. J. Korean Soc. Environ. Eng. 38, 580-587. https://doi.org/10.4491/KSEE.2016.38.10.580
  3. American Public Health Association (APHA). 2005. American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; Authors: Washington, DC, USA.
  4. Biovankorea. 2010. Microbial agent effective in wastewater treatment and its manufacturing methods and wastewater treatment technology. Korea Patent. No. 10-2010-0089906.
  5. Blazejak, A. and Schippers, A. 2011. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea. Front. Microbiol. 2, 253-279.
  6. Cankovic, M., Petric, I., Margus, M., and Ciglenecki, I. 2017. Spatiotemporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis J. Mar. Syst. 172, 14-23. https://doi.org/10.1016/j.jmarsys.2017.03.003
  7. Chang, J.S., Song, J., Kim, I.S., Yoo, J.Y., and Koh, S.C. 2015. Eco-friendly remediation and odor control of a contaminated urban stream using beneficial microorganisms. Korean J. Microbiol. 51, 389-397. https://doi.org/10.7845/kjm.2015.5065
  8. Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265-270.
  9. Chon, T.S., Qu, X., Cho, W.S., Hwang, H.J., Tang, H., Liu, Y., Choi, J.H., Jung, M., Chung, B.S., Lee, H.Y., et al. 2013. Evaluation of stream ecosystem health and species association based on multitaxa (benthic macroinvertebrates, algae, and microorganisms) patterning with different levels of pollution. Ecol. Inform. 17, 58-72. https://doi.org/10.1016/j.ecoinf.2013.06.004
  10. Chung, Y.J. and Im, K.S. 2006. Purification of stream water quality by using rope media filter. J. Korean Soc. Water Qual. 22, 238-243.
  11. Ekpeghere, K.I., Bae, H.J., Kwon, S.H., Kim, B.H., Park, D.J., and Koh, S.C. 2009. Clean-up of the crude oil contaminated marine sediments through biocarrier-mediated bioaugmentation. Korean J. Microbiol. 45, 354-361.
  12. Ekpeghere, K.I., Kim, B.H., Son, H.S., Whang, K.S., Kim, H.S., and Koh, S.C. 2012. Functions of effective microorganisms in bioremediation of the contaminated harbor sediments. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 47, 44-53. https://doi.org/10.1080/10934529.2012.629578
  13. Hamady, M., Lozupone, C., and Knight, R. 2010. Fast Uni Frac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and Phylo Chip data. ISME J. 4, 17-27. https://doi.org/10.1038/ismej.2009.97
  14. Herrero, M. and Stuckey, D.C. 2015 Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 140, 119-128. https://doi.org/10.1016/j.chemosphere.2014.10.033
  15. Jiao, Y., Zhao, Q., Jin, W., Hao, X., and You, S. 2011. Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water. Bioresour. Technol. 102, 990-995. https://doi.org/10.1016/j.biortech.2010.09.061
  16. Jung, S.R. and Lin, Y.F. 2004. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in Southern Taiwan. Environ. Pollut. 127, 291-301. https://doi.org/10.1016/S0269-7491(03)00267-7
  17. Kim, S.J., Choi, Y.S., and Bae, W.G. 2006. Application of hybrid constructed wetland system for stream water quality improvement. Korean Water Environ. Assoc. 22, 209-214.
  18. Kim, M.K., Choi, J.S., Kim, S.J., and Kim, H.G. 2013. Improvement of medium and small urban stream water quality and applicability of design factor using biological and physicochemical processing. J. Kor. Soc. Environ. Eng. 35, 509-517. https://doi.org/10.4491/KSEE.2013.35.7.509
  19. Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, B.S., Song, B., Chun, J., Kim, J.T., Kim, H.G., and Koh, S.C. 2014. Full-scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 49, 355-364. https://doi.org/10.1080/10934529.2014.846707
  20. Kim, S.J. and Lee, S.S. 2010. The development of treatment system for removing the low concentrated nitrogen and phosphorus using phototrophic bacteria and media. Korean J. Microbiol. 46, 27-32.
  21. Kim, K. and Yeo, H.K. 2004. A river restoration program based on a close-to-nature river improvement process in Korea. Adv. Hydro-Sci. Engineer. 4.
  22. Lenk, S., Arnds, J., Zerjatke, K., Musat, N., Amann, R., and Musmann, M. 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ. Microbiol. 13, 758-774. https://doi.org/10.1111/j.1462-2920.2010.02380.x
  23. Liu, B., Giannis, A., Zhang J., Chang, V.W.C., and Wang, J.Y. 2013. Characterization of induced struvite formation from sourceseparated urine using seawater and brine as magnesium sources. Chemosphere 93, 2738-2747. https://doi.org/10.1016/j.chemosphere.2013.09.025
  24. Luisa, W.M., Letícia, T., Francielle, B., Raquel, D., Patricia, D.Q., Kateryna, Z., Jennifer, D., Robson, A., Eric, W.T., Ana, P., et al. 2015. Culture-independent analysis of bacterial diversity during bioremediation of soil contaminated with a diesel-biodiesel blend (B10)S. J. Bioremed. Biodegrad. 6. doi:10.4172/2155-6199.1000318.
  25. Ma, F., Guo, J.B., Zhao, L.J., Chang, C.C., and Cu, D. 2009. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol. 100, 597-602. https://doi.org/10.1016/j.biortech.2008.06.066
  26. McBride, M.J. 2014. The family Flavobacteriaceae. The Prokaryotes. pp. 643-676.
  27. Ministry of Environment. 2017. Regulatory Standards for Stream Water Quality.
  28. Nogales, B., Lanfranconi, M.P., Pina-Villalonga, J.M., and Bosch, R. 2011. Anthropogenic pertur bations in marine microbial communities. FEMS Microbiol. Rev. 35, 275-298. https://doi.org/10.1111/j.1574-6976.2010.00248.x
  29. Oh, Y.M., Yee, J.H., Pak, J.J., Choi, K.J., Pak T.J., and Yee, T.H. 2010. Water quality improvement of stagnant water using an upflow activated carbon biofilm process and microbial community analysis. J. Korean Soc. Environ. Eng. 32, 1191-1200.
  30. Park, J.S., Kim, B.K., Kim, W.S., Seo, D.S., and Kim, W.J. 2014. Investigation on water purification effect through long-term continuous flow test of porous concrete using effective microorganisms. J. Korea Concr. Inst. 26, 219-227. https://doi.org/10.4334/JKCI.2014.26.2.219
  31. Saeed, T. and Sun, G.Z. 2011. Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments. Bioresour. Technol. 102, 967-974. https://doi.org/10.1016/j.biortech.2010.09.056
  32. Shannon, C.E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423 and 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  33. Tamaki, H., Hanada, S., Kamagata, Y., Nakamura, K., Nomura, N., Nakano, K., and Matsumura1, M. 2003. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int. J. Syst. Evol. Microbiol. 53, 519-526. https://doi.org/10.1099/ijs.0.02369-0
  34. Tang, W., Zhang, W., Zhao, Y., Wang, Y., and Shan, B. 2013. Ecological nitrogen removal from polluted river water in a novel ditch-wetland-pond system. Ecol. Eng. 60, 135-139. https://doi.org/10.1016/j.ecoleng.2013.07.009
  35. Tian, X., Wang, G., Guan, D., Li, J., Wang, A., Li, J., Yu, Z., Chen, Y., and Zhang, Z. 2016. Reverse osmosis brine for phosphorus recovery from source separated urine. Chemosphere 165, 202-210. https://doi.org/10.1016/j.chemosphere.2016.09.037
  36. Tortosa, G., Correa, D., Sanchez-Raya, A.J., Delgado, A., Sáchez- Monedero, M.A., and Bedmar, E.J. 2011. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina Stream (Donana National Park, SW Spain). Ecol. Eng. 37, 539-548. https://doi.org/10.1016/j.ecoleng.2010.06.029
  37. Wallenstein, M.D., Myrold, D.D., Firestone, M., and Voytek, M. 2006. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143-2152. https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
  38. Wang, J., Gong B., Huang, W., Wang, Y., and Zhou, J. 2017. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing. Bioresour. Technol. 228, 31-38. https://doi.org/10.1016/j.biortech.2016.12.071
  39. Wang, Y., Sheng, H.F., He, Y., Wu, J.Y., Jiang, Y.X., Tam, N.F.Y., and Zhoua, H.W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. J. Appl. Environ. Microbiol. 78, 8264-8271. https://doi.org/10.1128/AEM.01821-12
  40. Yang, K.H. 2003. Water treatment system using titanium bioball. Korea Patent. No. 10-2003-0102359.
  41. Yao, S., Chen, L., Guan, D., Zhang, Z., Tian, X., Wang, A., Wang, G., Yao, Q., Peng, D., and Li, J. 2017. On-site nutrient recovery and removal from source-separated urine by phosphorus precipitation and short-cut nitrification-denitrification. Chemosphere 175, 210-218. https://doi.org/10.1016/j.chemosphere.2017.02.062