DOI QR코드

DOI QR Code

Effect of titanium powder on the bond strength of metal heat treatment

티타늄 파우더가 금속의 열처리 시 결합강도에 미치는 영향

  • Kim, Sa-Hak (Department of Dental Technology, Kyungdong University) ;
  • Kim, Wook-Tae (Department of Dental Technology and Science, College of Health Science, Shin-Han University)
  • 김사학 (경동대학교 치기공학과) ;
  • 김욱태 (신한대학교 보건과학대학 치기공학과)
  • Received : 2017.01.14
  • Accepted : 2017.04.10
  • Published : 2017.06.30

Abstract

Purpose: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. Materials and Methods: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). Results: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: $39.22{\pm}3.41MPa$ and $6.66{\mu}m$, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: $34.65{\pm}1.39MPa$ and $13.22{\mu}m$. Experiment T1 using no Titanium chemical catalyst: $32.37{\pm}1.91MPa$ and $22.22{\mu}m$. Conclusion: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.

목적: 본 연구는 베릴륨이 함유되지 않은 금속-도재용(Ni-Cr)합금 산화처리 시 도재로 안에 티타늄 파우더를 화학적 촉매로 이용하여 산화막을 억제하고, 금속 표면에 형성될 불순물을 제어하여 도재의 결합력을 증진시켜 줄 수 있는 가능성을 분석 하고자 하였다. 연구 재료 및 방법: 베릴륨이 함유되지 않은 금속-도재용(Ni-Cr)합금 산화처리 시 도재로 안에 티타늄을 화학적 촉매로 이용하였다. 티타늄 파우더를 화학적 촉매로 사용하지 않은 T1군을 대조군으로 하고, 10 g, 20 g 티타늄 파우더를 사용한 시편을 T2, T3군으로 분류하여 전단결합강도와 계면특성 관찰을 위하여 제작 하였다. 일원배치 분산분석(one-way ANOVA)은 그룹의 차이를 검사하기 위해서 시행하였고 사후 검정(Tukey Honestly Significant Difference test)은 그룹 간의 통계적 분석을 위하여 수행되었다. 결과: 티타늄 파우더를 화학적 촉매로 사용 한 T3군의 3점 굽힘 결합강도와 산화막 두께를 측정한 결과, $39.22{\pm}3.4MPa$$6.66{\mu}m$로 가장 높고, 얇게 나타났으며, T2군은 $34.65{\pm}1.39MPa$$13.22{\mu}m$, 티타늄 화학적 촉매로 사용하지 않은 대조군 T1군은 $32.37{\pm}1.91MPa$$22.22{\mu}m$ 순으로 나타났다. 결론: 시편들의 결합강도를 통계 분석한 결과, 티타늄 파우더를 화학적 촉매로 사용한 실험 T3, T2군의 결합력이 높게 나타났고, 산화막 두께 역시 대조군 T1군 보다 얇게 나타나 것으로 결합력 증진에 영향을 줄 수 있음이 관찰 되었다.

Keywords

References

  1. Wataha JC, Messer RL. Casting alloys. Dent Clin North Am 2004;48:499-512. https://doi.org/10.1016/j.cden.2003.12.010
  2. McCabe JF, Walls AWG. Applied dental materials. 7th ed. London; Mass Publishing Co.; 1994. p.71-8.
  3. Oshida Y, Fung LW, Isikbay SC. Titanium-porcelain system. Part II: bond strength of fired porcelain on nitrided pure titanium. Biomed Mater Eng 1997;7: 13-34.
  4. Cascone PJ, Massimo M, Tuccillo JJ. Theoretical interfacial reactions responsible for bonding in porcelain-to-metal systems. Part II-Oxidation of alloys. J Dent Res 1978;57:872. https://doi.org/10.1177/00220345780570090501
  5. Sakaguchi R, Powers J. Resin composite restorative materials. Craig's restorative dental materials. 12th ed. St. Lousis; Mosby Elsevier; 2006. p. 189-212.
  6. Morris HF. Properties of cobalt-chromium metal ceramic alloys after heat treatment. J Prosthet Dent 1990;63:426-33. https://doi.org/10.1016/0022-3913(90)90232-2
  7. Pierce LH, Goodkind RJ. A status report of possible risks of base metal alloys and their components. J Prosthet Dent 1989;62:234-8. https://doi.org/10.1016/0022-3913(89)90320-X
  8. Magnusson B, Bergman M, Bergman B, Soremark R. Nickel allergy and nickel-containing dental alloys. Scand J Dent Res 1982;90:163-7.
  9. Wang RR, Welsch GE, Monteriro O. Silicon nitride coating on titanium to enable titanium-ceramic bonding. J Biomed Mater Res 1999;46:262-70. https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<262::AID-JBM16>3.0.CO;2-1
  10. Walter M, Reppel PD, Boning K, Freesmeyers WB. Six-year follow-up of titanium and high-gold porcelain-fused-to metal fixed partial dentures. J Oral Rehabil 1999;26:91-6. https://doi.org/10.1046/j.1365-2842.1999.00373.x
  11. Kaus T, Probster L, Weber H. Clinical follow-up study of ceramic veneered titanium restorations - three-year results. Int J Prosthodont 1996;9:9-15.
  12. Sandrock G, Gross K, Thomas G. Effect of Ticatalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloy Compd 2002;339:299-308. https://doi.org/10.1016/S0925-8388(01)02014-X
  13. Matkovic T, Slokar L, Matkovic P. Structure and properties of biomedical Co-Cr-Ti alloys. J Alloy Compd 2006;407:294-8. https://doi.org/10.1016/j.jallcom.2005.06.025
  14. Dent RJ, Preston JD, Moffa JP, Caputo A. Effect of oxidation on ceramometal bond strength. J Prosthet Dent 1982;47:59-62. https://doi.org/10.1016/0022-3913(82)90243-8
  15. O'brien WJ, Seluk LW, Fan PL, Saunders DN. Classification of porcelain enamel interfacial fractures. J Dent Res 1976;55:506. https://doi.org/10.1177/00220345760550033301
  16. Lenz J, Schwarz S, Schwickerath H, Sperner F, Schafer A. Bond strength of metal-ceramic systems in three-point flexure bond test. J Appl Biomater. 1995;6:55-64. https://doi.org/10.1002/jab.770060108
  17. Barghi N, Lorenzana RE. Optimum thickness of opaque and body porcelain. J Prosthet Dent 1982; 48:429-31. https://doi.org/10.1016/0022-3913(82)90080-4
  18. DeHoff PH, Anusavice KJ, Hathcock PW. An evaluation of the four point flexural test for metalceramic bond strength. J Dent Res 1982;61:1066-9. https://doi.org/10.1177/00220345820610090801
  19. Choi BK, Han JS, Yang JH, Lee JB, Kim SH. Shear bond strength of veneering porcelain to zirconia and metal cores. J Adv Prosthodont 2009;1:129-35. https://doi.org/10.4047/jap.2009.1.3.129
  20. Kelly JR, Rose TC. Nonprecious alloys for use in fixed prosthodontics: a literature review. J Prosthet Dent 1983;49:363-70. https://doi.org/10.1016/0022-3913(83)90279-2
  21. Bondioli IR, Bottino MA. Evaluation of shear bond strength at the interface of two porcelains and pure titanium injected into the casting mold at three different temperatures. J Prosthet Dent 2004; 91:541-7. https://doi.org/10.1016/j.prosdent.2004.03.033
  22. Shell JS, Nielsen JP. Study of the bond between gold alloys and porcelain. J Dent Res 1962;41:1424-37. https://doi.org/10.1177/00220345620410062101
  23. Okabe T, Hero H, The use of titanium in dentistry. Cell Mater 1995;5:211-30.
  24. Adachi M, Mackert JR Jr, Parry EE, Fairhurst CW. Oxide adherence and porcelain bonding to titanium and Ti6Al-4V alloy. J Dent Res 1990;69:1230-5. https://doi.org/10.1177/00220345900690060101