DOI QR코드

DOI QR Code

Analysis of Seoul Metropolitan Subway Network Characteristics Using Network Centrality Measures

네트워크 중심성 지표를 이용한 서울 수도권 지하철망 특성 분석

  • Lee, Jeong Won (Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology) ;
  • Lee, Kang Won (Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology)
  • Received : 2017.04.04
  • Accepted : 2017.05.30
  • Published : 2017.06.30

Abstract

In this study we investigate the importance of the subway station using network centrality measures. For centrality measures, we have used betweenness centrality, closeness centrality, and degree centrality. A new measure called weighted betweenness centrality is proposed, that combines both traditional betweenness centrality and passenger flow between stations. Through correlation analysis and power-law analysis of passenger flow on the Seoul metropolitan subway network, we have shown that weighted betweenness centrality is a meaningful and practical measure. We have also shown that passenger flow between any two stations follows a highly skewed power-law distribution.

본 연구에서는 네트워크 중심성 지표를 사용하여 지하철 네트워크의 개별 노드의 중요성을 분석하고 이로부터 한국 지하철 네트워크의 특성을 분석하였다. 중심성 측도로 매개, 근접 그리고 차수 중심성을 사용하였다. 본 연구에서는 기존에 제안된 매개 중심성 지표와 승객들의 실제 흐름양을 함께 고려한 가중 매개 중심성 지표를 새롭게 제안하였다. 그리고 본 연구에서 제안한 여러 중심성 지표들 사이의 상관관계를 조사함으로서 서울 수도권 지하철과 승객 흐름의 구조적 특성 등을 조사하였다. 아울러 승객들 흐름의 편중 현상을 조사하기 위하여 멱분포(Power-law) 분석을 수행하여 결과 분석의 신빙성을 더하였다.

Keywords

References

  1. S. Derrible (2012) Network Centrality of Metro Systems, PloS One, 7(7), e40575, pp. 1-10.
  2. V. Latora, M. Marchiori (2001) Efficient Behavior of Small-World Networks, Physical Review Letters, 87(19), P.198701. https://doi.org/10.1103/PhysRevLett.87.198701
  3. M.L. Mouronte (2014) Topological Analysis of the Subway Network of Madrid, International Multi-Conference on Computing in the Global Information Technology, Seville, Spain, pp. 9-13.
  4. S. Stoilova, V. Stoev (2015) An Application of the Graph Theory Which Examines the Metro Network, Transport Problems, 10(2), pp. 35-48.
  5. B. Leng, X. Zhao, X. Zhang (2014) Evaluating the Evolution of Subway Networks: Evidence from Beijing Subway Network, Europhysics Letters, 105(5), P.58004. https://doi.org/10.1209/0295-5075/105/58004
  6. S.Y. Zang, K.W. Lee (2016) Characteristics and Efficiency Analysis of Evolutionary Seoul Metropolitan Subway Network, Journal of the Korean Society for Railway, 19(3), pp. 388-396. https://doi.org/10.7782/JKSR.2016.19.3.388
  7. C.P. Monterola, M.A. Ramli, G.L. Khoon, T.H. Guang (2014) A Method to Ascertain Rapid Transit System's Throughput Distribution Using Network Analysis, Procedia Computer Science, 29, pp. 1621-1630. https://doi.org/10.1016/j.procs.2014.05.147
  8. A. H'aznagy, I. Fi, A. Londo, T. N'emeth (2015) Complex Network Analysis of Public Transportation Networks: A Comprehensive Study, 2015 Models and Technology for Intelligent Transport Systems, Budapest, Hungary, pp.371-378.
  9. Y.Y. Cheng, R.K. W. Lee, E.P. Lim, F. Zhu (2015) Measuring Centralities for Transportation Networks beyond Structures, Applications of Social Media and Social Network Analysis, Springer International Publishing, Switzerland, pp. 23-39.
  10. Seoul Open Data Plaza, http://data.seoul.go.kr (Accessed 30 January 2016)
  11. Korea Transportation Database, http://www.ktdb.go.kr (Accessed 30 January 2016)
  12. Q. XU, B.H. Mao, Y. Bai (2016) Network Structure of Subway Passenger Flow, Journal of Statistical Mechanics; Theory & Experiment, pp. 1-18.

Cited by

  1. Network Betweenness Centrality and Passenger Flow Analysis of Seoul Metropolitan Subway Lines vol.41, pp.2, 2018, https://doi.org/10.11627/jkise.2018.41.2.095