DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root

레드 비트 뿌리 추출물의 항산화 및 항염증 효과

  • Yi, Mi-Ran (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kang, Chang-Hee (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Bu, Hee-Jung (Biotechnology Regional Innovation Center, Jeju National University)
  • 이미란 (제주대학교 생명과학기술혁신센터) ;
  • 강창희 (제주대학교 생명과학기술혁신센터) ;
  • 부희정 (제주대학교 생명과학기술혁신센터)
  • Received : 2017.03.29
  • Accepted : 2017.05.11
  • Published : 2017.06.30

Abstract

This study was designed to examine the in vitro antioxidant and anti-inflammatory effects of red beet (Beta vulagaris) root. Red beet root was extracted using 70% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. Antioxidative ability was evaluated by bioassays using total polyphenol contents and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt) radical scavenging activity. Ethyl acetate fraction of red beet root was best on total polyphenol contents ($37.02{\pm}0.37mg\;GAE/g$) and ABTS radical scavenging effects ($IC_{50}$ $42.9{\pm}9.5{\mu}g/mL$). For the anti-inflammatory activity in RAW264.7 cells, the hexane fraction showed the highest inflammatory effect. Dose response studies were performed to determine the inhibitory effect of hexane fraction of red beet root on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The hexane fraction of red beet root inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$), in a dose-dependent manner. These results suggest that red beet root has considerable potential as a functional food ingredient with antioxidative and anti-inflammatory effects.

본 연구는 제주도에서 재배된 레드 비트(B. vulagaris) 뿌리의 항산화 및 항염 효과를 알아보기 위하여 70% EtOH 추출물과 순차적 용매 분획물들을 확보하여 총폴리페놀 함량 및 ABTS 라디칼 소거 활성 측정을 통한 항산화 효능평가와 대식세포인 RAW264.7 세포에 LPS를 자극한 후 iNOS/NO, $COX-2/PGE_2$ 및 전염증성 cytokine을 유도하여 염증 억제 효과를 알아보았다. 그 결과, 총 폴리페놀이 37.02 mg GAE/g로 가장 높게 나온 EtOAc 분획물이 라디칼 소거활성도 가장 우수하게 나타났으며($IC_{50}$ $42.9{\mu}g/mL$), 대조군으로 사용한 BHT($IC_{50}$ $57.4{\mu}g/mL$)보다 좋은 활성을 보였다. 항염 활성 분석을 위하여 NO/iNOS, $PGE_2/COX-2$, 및 염증성 cytokine($TNF-{\alpha}$, IL-6, $IL-1{\beta}$)의 생성 억제 효능을 분석한 결과, 총 폴리페놀 함량 결과와는 유의적이지 않게 hexane 분획물이 처리 농도 범위(50, 100, 200, $300{\mu}g/mL$)에서 NO/iNOS, $PGE_2/COX-2$, 및 염증성 cytokine 생성을 유의적으로 억제하였다. iNOS와 COX-2 단백질 발현 억제 효과를 통해 NO와 $PGE_2$ 생성 억제에 영향을 끼치고 있음을 확인하였고, 염증성 cytokine 중에는 IL-6의 생성을 가장 강하게 억제함으로써 전체적으로 항염 활성에 영향을 미치고 있음을 확인할 수 있었다. 이러한 결과들로부터 레드비트 뿌리의 EtOAc 분획물에서의 항산화 효능 확인과 hexane 분획물의 세포내 항염 효과를 알 수 있었으며, 향후 유효 물질 동정을 통한 기전 연구를 하는 데 대한 기초자료로 활용할 수 있을 것이라 사료된다.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원

References

  1. Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H (1999) Phenolic antioxidants from the leaves of Corchorusolitorius L. J Agric Food chem, 47, 3963-3966 https://doi.org/10.1021/jf990347p
  2. Kawashima S (1969) The possible role of lipoperoxide in aging. Nagoya J Med Sci, 32, 303-326
  3. Decker EA, Crum AD, Calvert JT (1992) Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J Agric Food Chem, 40, 756-759 https://doi.org/10.1021/jf00017a009
  4. Jeong SI, Kim HS, Jeon IH, Kang HJ, Mok JY, Cheon CJ, Yu HH, Jang SI (2014) Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla frutescens. Korean J Food Sci Technol, 46, 87-93 https://doi.org/10.9721/KJFST.2014.46.1.87
  5. Ryu, JH, Ahn H, Kim JY, Kim YK (2003) Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res, 17, 485-489 https://doi.org/10.1002/ptr.1180
  6. Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolence: learning self-control in the thymus. Nat Rev Immunol, 5, 772-782 https://doi.org/10.1038/nri1707
  7. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, Kang HS, Cho JY, Oh JW, Kim SK, Rhee MH (2012) Korean red ginseng saponin fraction down regulates pro-inflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res, 36, 263-269 https://doi.org/10.5142/jgr.2012.36.3.263
  8. Oh SH, Choi SY, Lee NR, Lee JN, Kim DS, Lee SH, Park SM (2014) Cell migration and anti-inflammatory effect of red ginseng extracts fermented with laetiporus sulphureus, J Soc Cosmet Scientists Korea, 40, 297-305 https://doi.org/10.15230/SCSK.2014.40.3.297
  9. Willeaume V, Kryus V, Mijatovic T, Huez G (1996) Turmor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm, 46, 1-12
  10. Chang SK, Hyun WC, Kim JH, Ko YJ, Song SM, Ko MH, Lee JC, Kim CS, and Yoon WJ (2015) Anti-inflammatory effects on 80% ethanol extract and ethyl acetate fraction of Acrosorium yendoi Yamada in murin macrophage RAW264.7 cells. Korean J Plant Res, 28, 574-581 https://doi.org/10.7732/kjpr.2015.28.5.574
  11. Kapadia GJ, Tokuda H, Konoshima T, Nishino H (1996) Chemoprevention of lung and skin cancer by beta vulgaris (beet) root extract. Cancer Lett, 100, 211-214 https://doi.org/10.1016/0304-3835(95)04087-0
  12. Kanner J, Harel S, Granit R (2001) Betalains-a new class of dietary cationized antioxidants. J Agric Food Chem, 49, 5178-5185 https://doi.org/10.1021/jf010456f
  13. Kapadia GJ, Azuine MA, Sridhar R, Okuda Y, Tsuruta A, Ichiishi E, Mukainake T, Takasaki M, Konoshima T, Nishino H, Tokuda H (2003) Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol Res, 47, 141-148 https://doi.org/10.1016/S1043-6618(02)00285-2
  14. Allegra M, Furtmuller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C (2005) Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Biophys Res Commun, 332, 837-844 https://doi.org/10.1016/j.bbrc.2005.05.031
  15. Gliszczynska-Swiglo A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam, 23, 1079-1087
  16. Jang JR, Kim KK, Lim SY (2009) Effects of solvent extracts from dried beet (Beta vulgaris) on antioxidant in cell systems and growth of human cancer cell lines. J Korean Soc Food Sci Nutr, 38, 832-838 https://doi.org/10.3746/jkfn.2009.38.7.832
  17. Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ (2006) A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol, 18, 445-450 https://doi.org/10.1007/s10811-006-9048-4
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Amano F, Noda T (1995) Improved detection of nitric oxide radical production in an activated macrophage culture with a radical scavenger, carboxy PTIO and griess reagent. FEBS Lett, 368, 425-428 https://doi.org/10.1016/0014-5793(95)00700-J
  20. Chei HJ, Lee HJ, Shin BG, Lee IC, Hwang JS (2004) Deoxypodophyllotoxin reduces skin pigmentation of brown guinea pigs. Planta Med, 70, 378-380 https://doi.org/10.1055/s-2004-818955
  21. Giovannini C, Scazzocchio B, Vari R, Santangelo C, D'Archivo M, Masella R (2007) Apoptosis in cancer and atherosclerosis: polyphenol activities. Ann Ist Super Sanita, 43, 406-416
  22. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y (1994) Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant Med, 60, 417-420 https://doi.org/10.1055/s-2006-959522
  23. Rice Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci, 2, 152-159 https://doi.org/10.1016/S1360-1385(97)01018-2
  24. Lee JH, Chin KB (2012) Evaluation of antioxidant activities of red beet extracts, and physicochemical and microbial changes of ground pork patties containing red beet extracts during refrigerated storage. Korean J Food Sci An, 32, 497-503 https://doi.org/10.5851/kosfa.2012.32.4.497
  25. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol, 11, 419-421 https://doi.org/10.1016/S0924-2244(01)00027-9
  26. Lee SH, Kim NS, Choi BK, Park YH, Kim JB, Jang HH, Hwang YJ, Choe JS, Lee SH (2017) Evaluation of antioxidant, anti-inflammatory, antithrombotic, and antiobesity activities in cultured edible plants to increase farm income. Korean J Community Living Sci, 28, 29-43 https://doi.org/10.7856/kjcls.2017.28.1.29
  27. Tezuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S (2001) Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bungeanum. J Ethnopharmacol, 77, 209-217 https://doi.org/10.1016/S0378-8741(01)00300-2
  28. Kim RG, Shin KM, Chun, SK, Ji SY, Seo SH, Park HJ, Choi JW, Lee KT (2002) In vitro anti-inflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in murine macrophage RAW264.7 cells. J Pharm Soc Korea, 46, 343-347
  29. Kim SS, Park KJ, An HJ, Choi YH (2016) Citrus platymamma inhibits the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW264.7 macrophage. Korean J Food Preserv, 23, 1026-1032