DOI QR코드

DOI QR Code

The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere

세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가

  • Lee, Won-Jun (Icheon Branch, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Hwang, Hae-Jin (School of Material Science and Engineering, Inha University) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Hwnag, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Cho, Woo-Suk (Icheon Branch, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering & Technology(KICET))
  • 이원준 (한국세라믹기술원 이천분원) ;
  • 황해진 (인하대학교 신소재공학부) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2016.09.29
  • Accepted : 2017.05.25
  • Published : 2017.07.27

Abstract

Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

Keywords

References

  1. C. Black, D. Brockway, S. Hodges and A. Milner, Gippsland Basin Symposium, (Melbourne, June, 1992), p22-23.
  2. A peloso, M. Rovatti and Giuseppe, Resources and Conservation, 10, 211 (1983). https://doi.org/10.1016/0166-3097(83)90015-9
  3. E. J. De guire and S. H. Risbud, J. Mater. Sci., 19, 1760 (1984). https://doi.org/10.1007/BF00550245
  4. R. T. Hermmings, E. E. Berry and D. M. Golden, in Eighth International Ash Utilization Symposium, 2 (1987).
  5. H. J. Lee, D. W. Kim, K. G. Lee, Y. T. Kim, S. C. Hong and S. J. Lee, J. Korean Assoc. Cryst. Growth, 3, 185 (1993).
  6. K. G. Lee, C. J. Park, Y.. T. Kim, S. B. kim and J. H. Kim, J. Korean Ceram. Soc., 35, 180 (1998).
  7. K. G. Lee, H. J. Lee, C. J. Park, D. W. Kim, Y. T. Kim and S. B. Kim, J. Korean Ceram. Soc., 33, 135 (1996).
  8. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  9. F. Tuinstra, and J. L. Koening, J. Chem. Phys., 53, 1126 (1970). https://doi.org/10.1063/1.1674108
  10. P. Kanjanakul, J. Kaewkhao, S. Insiripong, P. Limsuwan and C. Kedkaew, Proc. Engn., 8, 75 (2011). https://doi.org/10.1016/j.proeng.2011.03.014