DOI QR코드

DOI QR Code

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul (Department of pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Moussavi, Ahmad (Department of pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Zahiri, Masoome (Department of Mathematics Faculty of Sciences Higher Education Center of Eghlid)
  • Received : 2016.06.28
  • Accepted : 2016.09.21
  • Published : 2017.07.31

Abstract

Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.

Keywords

References

  1. A. H. Al-Huzali, S. K. Jain, and S. R. Lopez-Permouth-Permouth, Rings whose cyclics have finite Goldie dimension, J. Algebra. 153 (1992), no. 1, 37-40. https://doi.org/10.1016/0021-8693(92)90147-E
  2. D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14. https://doi.org/10.1090/S0002-9939-1994-1191864-2
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, in Ring Theory, eds. S. K. Jain and S. T. Rizvi, 102-129, World Scientific, Singapore, 1993.
  4. V. P. Camillo, Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), no. 2, 337-338. https://doi.org/10.2140/pjm.1977.69.337
  5. A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing Program, Boston, 1980.
  6. K. R. Goodearl and Jr. R. B. Warfield, An introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16. Cambridge University Press, Cambridge, 1989.
  7. C. Y. Hong, Y. C. Jeon, K. H. Kim, N. K. Kim, and Y. Lee, Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings, J. Pure Appl. Algebra 207 (2006), no. 3, 565-574. https://doi.org/10.1016/j.jpaa.2005.10.018
  8. C. Huh, N. K. Kim, and Y. Lee, An Anderson's Theorem on noncommutative rings, Bull. Korean Math. Soc. 45 (2008), no. 4, 797-800. https://doi.org/10.4134/BKMS.2008.45.4.797
  9. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  10. N. K. Kim and Y. Lee, On rings whose prime ideals are completely prime, J. Pure Appl. Algebra 170 (2002), no. 2-3, 255-265. https://doi.org/10.1016/S0022-4049(01)00148-7
  11. R. P. Kurshan, Rings whose cyclic modules have finitely generated socle, J. Algebra 15 (1970), 376-386. https://doi.org/10.1016/0021-8693(70)90066-9
  12. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag New York, Inc, 1998.
  13. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag New York, Inc, 1990.
  14. T. K. Lee and Y. Zhou, A unified approach to the Armendariz property of polynomial rings and power series rings, Colloq. Math. 113 (2008), no. 1, 151-169. https://doi.org/10.4064/cm113-1-9
  15. S. R. Lopez-Permouth, Rings characterized by their weakly injective modules, Glasgow Math. J. 34 (1992), no. 3, 349-353. https://doi.org/10.1017/S0017089500008934
  16. G. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
  17. R. C. Shock, Dual generalization of the Artinian and Noetherian conditions, Pacific J. Math. 54 (1974), no. 2, 227-235. https://doi.org/10.2140/pjm.1974.54.227
  18. A. Tuganbaev and Semiregular, Weakly regular, and ${\pi}$-regular rings, J. Math. Sci. (New York) 109 (2002), no. 3, 1509-1588. https://doi.org/10.1023/A:1013929008743