DOI QR코드

DOI QR Code

SOME PROPERTIES OF THE BEREZIN TRANSFORM IN THE BIDISC

  • Received : 2016.07.27
  • Accepted : 2016.12.09
  • Published : 2017.07.31

Abstract

Let m be the Lebesgue measure on ${\mathbb{C}}$ normalized to $m(D)=1,{\mu}$ be an invariant measure on D defined by $d_{\mu}(z)=(1-{\mid}z{\mid}^2)^{-2}dm(z)$. For $f{\in}L^1(D^n,m{\times}{\cdots}{\times}m)$, Bf the Berezin transform of f is defined by, $$(Bf)(z_1,{\ldots},z_n)={\displaystyle\smashmargin{2}{\int\nolimits_D}{\cdots}{\int\nolimits_D}}f({\varphi}_{z_1}(x_1),{\ldots},{\varphi}_{z_n}(x_n))dm(x_1){\cdots}dm(x_n)$$. We prove that if $f{\in}L^1(D^2,{\mu}{\times}{\mu})$ is radial and satisfies ${\int}{\int_{D^2}}fd{\mu}{\times}d{\mu}=0$, then for every bounded radial function ${\ell}$ on $D^2$ we have $$\lim_{n{\rightarrow}{\infty}}{\displaystyle\smashmargin{2}{\int\int\nolimits_{D^2}}}(B^nf)(z,w){\ell}(z,w)d{\mu}(z)d{\mu}(w)=0$$. Then, using the above property we prove n-harmonicity of bounded function which is invariant under the Berezin transform. And we show the same results for the weighted the Berezin transform in the polydisc.

Keywords

References

  1. P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380-397. https://doi.org/10.1006/jfan.1993.1018
  2. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335-386. https://doi.org/10.2307/1970220
  3. H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces, Short Courses, Washington Univ., St. Louis, Mo., 1969-1970.
  4. J. Lee, An invariant mean value property in the polydisc, Illinois J. Math. 42 (1998), no. 3, 406-419.
  5. J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2008), no. 2, 1489-1493. https://doi.org/10.1016/j.jmaa.2007.06.048
  6. J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), no. 1, 113-119. https://doi.org/10.4134/BKMS.2010.47.1.113