DOI QR코드

DOI QR Code

A G-Band Frequency Doubler Using a Commercial 150 nm GaAs pHEMT Technology

  • Lee, Iljin (School of Electrical Engineering, Korea University) ;
  • Kim, Junghyun (Devision of Electronic Engineering, Hanyang University) ;
  • Jeon, Sanggeun (School of Electrical Engineering, Korea University)
  • Received : 2017.04.07
  • Accepted : 2017.07.11
  • Published : 2017.07.31

Abstract

This paper presents a frequency doubler operating at G-band that exceeds the maximum oscillation frequency ($f_{max}$) of the given transistor technology. A common-source transistor is biased on class-B to obtain sufficient output power at the second harmonic frequency. The input and output impedances are matched to achieve high output power and high return loss. The frequency doubler is fabricated in a commercial 150-nm GaAs pHEMT process and obtains a measured conversion gain of -5.5 dB and a saturated output power of -7.5 dBm at 184 GHz.

Keywords

References

  1. Y. Kwon, D. Pavlidis, P. Marsh, M. Tutt, G. I. Ng, and T. Brock, "180 GHz InAlAs/InGaAs HEMT monolithic integrated frequency doubler," in Proceedings of 13th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Monterey, CA, 1991, pp. 165-168.
  2. H. Wang, K. W. Chang, D. Smith, G. S. Dow, K. L. Tan, A. K. Oki, and B. R. Allen, "A W-band source module using MMIC's," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 5, pp. 1010-1016, 1995. https://doi.org/10.1109/22.382059
  3. V. Puyal, A. Konczykowska, P. Nouet, S. Bernard, M. Riet, F. Jorge, and J. Godin, "A broad-band active frequency doubler operating up to 120 GHz," in Proceedings of European Gallium Arsenide and Other Semiconductor Application Symposium (GAAS 2005), Paris, France, 2005, pp. 557-560.
  4. V. Puyal, A. Konczykowska, P. Nouet, S. Bernard, S. Blayac, F. Jorge, M. Riet, and J. Godin, "DC-100-GHz frequency doublers in InP DHBT technology," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1338-1344, 2005. https://doi.org/10.1109/TMTT.2005.845766
  5. C. Schworer, Y. C. Roca, A. Leuther, A. Tessmann, M. Seelmann-Eggebert, H. Massler, M. Schlechtweg, and G. Weimann, "A 150 to 220 GHz balanced doubler MMIC using a 50 nm metamorphic HEMT technology," in Proceedings of European Gallium Arsenide and Other Semiconductor Application Symposium (GAAS 2005), 2005, Paris, France, pp. 565-568.
  6. Y. Campos-Roca, C. Schworer, A. Leuther, and M. Seel-mann-Eggebert, "G-band metamorphic HEMT-based frequency multipliers," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 2983-2992, 2006. https://doi.org/10.1109/TMTT.2006.877034
  7. I. Kallfass, A. Tessmann, H. Massler, D. Lopez-Diaz, A. Leuther, M. Schlechtweg and O. Ambacher, "A 300 GHz active frequency-doubler and integrated resistive mixer MMIC," in Proceedings of European Microwave Integrated Circuits Conference (EuMIC 2009), Rome, Italy, 2009, pp. 200-203.
  8. C. Coen, S. Zeinolabedinzadeh, M. Kaynak, B. Tillack, and J. D. Cressler, "A highly-efficient 138-170 GHz SiGe HBT frequency doubler for power-constrained applications," in Proceedings of 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, 2016, pp. 23-26.
  9. B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, "W-Band amplifiers with 6-dB noise figure and milliwattlevel 170-200-GHz doublers in 45-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 692-701, 2012. https://doi.org/10.1109/TMTT.2011.2165964

Cited by

  1. A Broadband THz On-Chip Transition Using a Dipole Antenna with Integrated Balun vol.7, pp.10, 2018, https://doi.org/10.3390/electronics7100236
  2. A Terahertz CMOS V-Shaped Patch Antenna with Defected Ground Structure vol.18, pp.8, 2018, https://doi.org/10.3390/s18082432
  3. Design of Experiment (DOE) Analysis of System Level ESD Noise Coupling to High-Speed Memory Modules vol.8, pp.2, 2019, https://doi.org/10.3390/electronics8020210