DOI QR코드

DOI QR Code

A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments

담수 퇴적물의 영양염 용출 측정 방법에 관한 고찰

  • Kim, Kyung Hee (Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Sung-Han (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Jin, Dal Rae (Water Environment Research Department, National Institute of Environmental Research) ;
  • Huh, In Ae (Water Environment Research Department, National Institute of Environmental Research) ;
  • Hyun, Jung-Ho (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 김경희 (국립환경과학원 물환경연구부) ;
  • 김성한 (한양대학교 해양융합공학과) ;
  • 진달래 (국립환경과학원 물환경연구부) ;
  • 허인애 (국립환경과학원 물환경연구부) ;
  • 현정호 (한양대학교 해양융합공학과)
  • Received : 2017.04.11
  • Accepted : 2017.05.16
  • Published : 2017.05.31

Abstract

Accurate measurement of benthic nutrient fluxes (BNF) is a prerequisite for evaluating the effect of sediments on nutrient cycle in the surface water. The intact sediment cores were collected in July 2015 at the midstream of Nakdong River. We identified pre-incubation time (6, 12, 24 hr), dissolved oxygen concentration (90, 70, 50% saturation), diffusive boundary layer thickness (0, 0.6-0.8, 1.2-1.4 mm), and incubation temperature (10, 17, 20, $25^{\circ}C$) as the most important control factors, and measured the BNF fluctuation with the variation of these factors using the laboratory sediment core incubation method. Since the chemical composition, redox condition, hydrodynamic regimes and microbial activities at the sediment-water interface were changed as a result of the alteration of control factors, sediment core incubation should be conducted under as close to the natural conditions of study site as possible, in order to produce the results similar to actual values. Relative percentage differences between two replicates were below 20% in most control factors, which showed satisfactory precision for strict compliance with the experimental conditions and procedures. In the further studies, we will compare the results of core incubation with those of in situ measurements to confirm the accuracy of the sediment core incubation method.

퇴적물이 수층의 영양염 분포에 미치는 영향을 평가하기 위해서 퇴적물의 용출률을 정확하게 측정할 필요가 있다. 이에 본 연구에서 퇴적물 용출률 측정 방법 중 퇴적물 코어 배양법을 대상으로 용출률의 측정 조건과 실험 절차를 제시하였다. 낙동강 수계 중류에서 2015년 7월에 표층이 교란되지 않은 퇴적물 코어 시료를 채취하여, pre-incubation 시간(6, 12, 24시간), 초기 산소농도(포화도 90, 70 50%), 확산경계층의 두께(0, 0.6-0.8, 1.2-1.4 mm), 배양 온도(10, 17, 20, $25^{\circ}C$) 등을 여러 가지 조건으로 조성하여 측정한 영양염 용출률의 결과를 그 바탕으로 하였다. 네 가지 주요 환경 조건이 달라지면, 안정화 시간 동안 유기물 분해 및 산화 과정에 의한 화학 조성 변화, 퇴적층의 산화-환원 환경 변화에 따른 흡착 및 탈착, 퇴적물-수층 경계면에서의 수리역학적 상황 변동에 의한 물질 교환 증감, 퇴적물 내 미생물의 활성 증가 등을 야기하여 퇴적물의 영양염용출률에 영향을 미친다. 따라서, 퇴적물 코어 배양법으로 실제 현장값과 유사한 결과를 생산하기 위해서는 현장 심수층의 수온 및 용존산소 농도, 유속을 자연 상태와 가깝게 재현하고 퇴적물 시료 채집 후 되도록 빠른 시간 안에 배양 실험을 수행해야 한다. 두 개의 반복구에 대하여 퇴적물 코어 배양법으로 영양염 용출률을 측정하였을 때 대부분의 실험 조건에서 상대백분율차가 20% 이하였다. 측정 조건과 절차를 엄밀히 준수하여 실험하였을 때 정밀도를 확보할 수 있는 것으로 사료되며, 향후 측정 결과의 정확도를 확인하기 위하여 현장 측정법과 비교할 예정이다.

Keywords

References

  1. D'Angelo, E. M. and Reddy, K. R., "Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column," J. Environ. Qual., 23(5), 928-936(1994). https://doi.org/10.2134/jeq1994.00472425002300050013x
  2. Nowlin, W. H., Evarts, J. L. and Vanni, M. J., "Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir," Freshwater Biol., 50, 301-322(2005). https://doi.org/10.1111/j.1365-2427.2004.01316.x
  3. Sondergaard, M., Jensen, J. P. and Jeppesen, E., "Role of sediment and internal loading of phosphorus in shallow lakes," Hydrobiol., 506-509, 135-145(2003). https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
  4. Eadie, B. J., Chambers, R. L., Gardner, W. S. and Bell, G. L., "Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin," J. Great Lakes Res., 10, 307-321(1984). https://doi.org/10.1016/S0380-1330(84)71844-2
  5. Martin, J. H., Knauer, G. A, Karl, D. M. and Broenkow, W. W., "VERTEX: carbon cycling in the northeast Pacific," Deep Sea Res., 34(2), 267-285(1987). https://doi.org/10.1016/0198-0149(87)90086-0
  6. Percuoco, V. P., Kalnejais, L. H. and Officer, L. V., "Nutrient release from the sediments of the Great Bay Estuary, N.H. USA," Estuarine, Coastal and Shelf Sci., 161, 76-87(2015). https://doi.org/10.1016/j.ecss.2015.04.006
  7. Glud, R. N., "Oxygen dynamics of marine sediments," Mar. Biol. Res., 4, 243-289(2008). https://doi.org/10.1080/17451000801888726
  8. Kristensen, E. and Holmer, M., "Decomposition of plant materials in marine sediment exposed to different electron acceptors ($O_2,\;NO_3^^-,\;and\;SO_4^^{2-}$), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation," Geochim. et Cosmochim. Acta, 65(3), 419-433(2001). https://doi.org/10.1016/S0016-7037(00)00532-9
  9. Fenchel, T., King, G. M. and Blackburn, T. H., Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 3rd ed, Academic Press, San Diego, p. 303(2012).
  10. Laanbroek, H. J., "Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review," Aquat. Botany, 38, 109-125(1990). https://doi.org/10.1016/0304-3770(90)90101-P
  11. Emerson, S. and Hedges, J., "Sediment diagenesis and benthic flux," The Oceans and Marine Geochemistry Vol. 6 Treatise on Geochemistry, Elderfield, H., Turekian, K. K. and Holland, H.D. (Eds.), Elsevier-Pergamon, Oxford, pp. 293-319(2003).
  12. Tromp, T. K., Van Cappellen, P. and Key, R. A., "A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments," Geochim. et Cosmochim. Acta, 59, 1259-1284(1995). https://doi.org/10.1016/0016-7037(95)00042-X
  13. Marsden, M. W., "Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorous release," Freshwater Biol., 21, 139-162(1989) https://doi.org/10.1111/j.1365-2427.1989.tb01355.x
  14. Sondergaard, M., Jensen, J. P. and Jeppesen, E., "Internal phosphorus loading in shallow Danish Lakes," Hydrobiol., 408/409, 145-153(1999). https://doi.org/10.1023/A:1017063431437
  15. Fisher, M. M., Reddy, K. R. and Thomas James, R., "Internal nutrient loads from sediments in a shallow, subtropical lake," Lake and Reservoir Manage., 21(3), 338-349(2005). https://doi.org/10.1080/07438140509354439
  16. Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y. and Li, S., "Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China," Mar. Pollut. Bullet., 114, 705-714(2017). https://doi.org/10.1016/j.marpolbul.2016.10.056
  17. Malecki, L. M., White, J. R. and Reddy, K. R., "Nitrogen and phosphorous flux rates from sediment in the lower St. Johns River estuary," J. Environ. Qual., 33(4), 1545-1555(2004). https://doi.org/10.2134/jeq2004.1545
  18. Reddy, K. R., Newman, S., Osborne, T. Z., White, J. R. and Fitz, H. C., "Phosphorous cycling in the greater everglades ecosystem: legacy phosphorous implications for management and restoration," Crit. Rev. Environ. Sci. Technol., 41, 148-186(2011).
  19. Berelson, W. M., Heggie, D., Longmore, A., Kilgore, T., Nicholson, G. and Skyring, G., "Benthic nutrient recycling in Port Phillip Bay, Australia," Estuarine, Coastal and Shelf Sci., 46, 917-934(1998). https://doi.org/10.1006/ecss.1998.0328
  20. Burger, D. F., Hamilton, D. P., Pilditch, C. A. and Gibbs, M. M., "Benthic nutrient fluxes in a eutrophic, polymictic lake," Hydrobiol., 584, 13-25(2007). https://doi.org/10.1007/s10750-007-0582-0
  21. Jeong, H.-Y. and Jo, K.-J., "SOD and inorganic nutrient fluxes from sediment in the downstream of the Nakdong River," Korean J. Limnol., 36(3), 322-335(2003).
  22. Teague, K. G., Madden, C. and Day, J. W., "Sediment-water oxygen and nutrient fluxes in a river-dominated estuary," Estuaries, 11, 1-9(1988). https://doi.org/10.2307/1351712
  23. Ogilvie, B., Nedwell, D. B., Harrison, R. M., Robinson, A. and Sage, A., "High nitrate, muddy estuaries as nitrogen sinks: The nitrogen budget of the River Colne estuary (United Kingdom)," Mar. Ecol. Prog. Series, 150, 217-228(1997). https://doi.org/10.3354/meps150217
  24. United Nations Environment Programme and the World Health Organization (UNEP/WHO), Water Quality Monitoring - A practical guide to the design and implementation of freshwater quality studies and monitoring programmes, Bartram, J. and Ballance, R. (Eds), CRC Press, New York, p. 396(1996).
  25. Southwell, M. W., Mead, R. N., Luquire, C. M., Barbera, A., Avery, G. B., Kieber, R. J. and Skrabal, S. A., "Influence of organic matter source and diagenetic state on photochemical release of dissolved organic matter and nutrients from resuspendable estuarine sediments," Marine Chem., 126, 114-119(2011). https://doi.org/10.1016/j.marchem.2011.04.005
  26. Berner, R. A., Early Diagenesis: a Theoretical Approach, Princeton University Press, Princeton, p. 256(1980).
  27. Aller, R. C., Blair, N. E., Xia, Q. and Rude, P. D., "Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments," Continental Shelf Res., 16(5/6), 753-789(1996). https://doi.org/10.1016/0278-4343(95)00046-1
  28. Hopkinson, C. S. and Wetzel, R. L., "In situ measurements of nutrient and oxygen fluxes in a coastal marine benthic community," Mar. Ecol. Prog. Series, 10, 29-35(1982). https://doi.org/10.3354/meps010029
  29. Tengberg, A., de Bovee, F., Hall, P., Berelson, W., Chadwick, B., Ciceri, G., Crassous, P., Devol, A., Emerson, S., Gage, J., Glud, R., Graziottin, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, H., Nuppenau, V., Pfannkuche, O., Reimers, C., Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B. and de Wilde, P., "Benthic chamber and profiling landers in oceanography - A review of design, technical solutions and functioning," Prog. Oceanogr., 35, 253-294(1995). https://doi.org/10.1016/0079-6611(95)00009-6
  30. Muller, B., Buis, K., Stierli, R. and Wehrli, B., "High spatial resolution measurements in lake sediments with PVC based liquid membrane ion-selective electrodes," Limnol. and Oceanogr., 43, 1728-1733(1998). https://doi.org/10.4319/lo.1998.43.7.1728
  31. De Beer, D., Schramm, A., Santegoeds, C. M. and Kuhl, M., "A nitrite microsensor for profiling environmental biofilms," Appl. Environ. Microbiol., 63(3), 973-977(1997).
  32. Huber, C., Klimant, I., Krause, C., Werner, T. and Wolfbeis, O. S., "Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye," Anal. Chim. Acta, 73, 2097-2103(2001). https://doi.org/10.1021/ac9914364
  33. Mortimer, R. J. G, Krom, M. D. Hall, P. O. J., Hulth, S. and Stahl, H., "Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters," Mar. Chem., 63(1-2), 119-129(1998). https://doi.org/10.1016/S0304-4203(98)00055-3
  34. Jarvie, H. P., Mortimer, R. J. G., Palmer-Felgate, E. J., Quinton, K. S., Harman, S. A. and Carbo, P., "Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediment using DET gel probes," J. Hydrol., 350(3), 261-273(2008). https://doi.org/10.1016/j.jhydrol.2007.10.041
  35. Kuwae, T., Hosokawa, Y. and Eguchi, N., "Dissolved inorganic nitrogen cycling in Banzu intertidal sand-flat, Japan," Mangroves and Salt Marshes, 2, 167-175(1998). https://doi.org/10.1023/A:1009973605222
  36. Qu, W., Morrison, R. J., West, R. J. and Su, C., "Diagenetic Stoichiometry and Benthic Nutrient Fluxes at the Sediment. Water Interface of Lake Illawarra, Australia," Hydrobiol., 537, 249-264(2005). https://doi.org/10.1007/s10750-004-3078-1
  37. Viollier, E., Rabouille, C., Apitz, S. E., Breuer, E., Chaillou, G., Dedieu, K., Furukawa, Y., Grenz, C., Hall, P., Janssen, F., Morford, J. L., Poggiale, J.-C., Roberts, S., Shimmield, T., Taillefert, M., Tengberg, A., Wenzhöfer, F. and Witte, U., "Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey," J. Experimental Mar. Biol. and Ecol., 285-286, 5-31(2003). https://doi.org/10.1016/S0022-0981(02)00517-8
  38. Truax, D. D., Shindala, A. and Sartain, H., "Comparison of two sediment oxygen demand measurement techniques," J. Environ. Eng., 121(9), 619-624(1995). https://doi.org/10.1061/(ASCE)0733-9372(1995)121:9(619)
  39. Hall, P. O. J., Anderson, L. G., van der Loeff, M. M. R., Sundby, B. and Westerlund, S. F. G., "Oxygen uptake kinetics in the benthic boundary layer," Limnol. and Oceanogr., 34(4), 734-746(1989). https://doi.org/10.4319/lo.1989.34.4.0734
  40. Chau, K. W., "Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong," Adv. Environ. Res., 6, 135-142(2002). https://doi.org/10.1016/S1093-0191(00)00075-7
  41. Sundback, K., Linares, F., Larson, F. and Wulff, A., "Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: The role of denitrification and microphytobenthos," Limnol. and Oceanogr., 49(4), 1095-1107(2004). https://doi.org/10.4319/lo.2004.49.4.1095
  42. Glud, R. N., Forster, S. and Huettel, M., "Influence of radial pressure gradients on solute exchange in stirred benthic chambers," Mar. Ecol. Prog. Series, 141, 303-311(1996). https://doi.org/10.3354/meps141303
  43. Ferron, S., Alonso-Perez, F., Castro, C. G., Ortega, T., Perez, F. F., Rios, A. F., Gomez-Parra, A. and Forja, J. M., "Hydrodynamic characterization and performance of an autonomous benthic chamber for use in coastal systems," Limnol. and Oceanogr.: Methods, 6, 558-571(2008). https://doi.org/10.4319/lom.2008.6.558
  44. Tengberg, A., Stahl, H., Gust, G., Müller, V., Arning, U., Andersson, H. and Hall, P. O. J., "Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics," Prog. Oceanogr., 60, 1-28(2004).
  45. Tengberg, A., Hall, P. O. J., Andersson, U., Linden, B., Styrenius, O., Boland, G., de Bovee, F., Carlsson, B., Ceradini, S., Devol, A., Duineveld, G., Friemann, J.-U., Glud, R. N., Khripounoff, A., Leather, J., Linke, P., Lund-Hansen, L., Rowe, G., Santschi, P., de Wildeg, P. and Witten, U., "Intercalibration of benthic flux chambers II. Hydrodynamic characterization and flux comparisons of 14 different designs," Mar. Chem., 94, 147-173(2005). https://doi.org/10.1016/j.marchem.2004.07.014
  46. Aller, R. C., "Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation," Chem. Geol., 114(3-4), 331-345(1994). https://doi.org/10.1016/0009-2541(94)90062-0
  47. Koo, B. J., Kwon, K. K., and Hyun, J.-H.. "Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat," J. Sea Res., 58(4), 302-312(2007). https://doi.org/10.1016/j.seares.2007.07.002
  48. Hammond, D. E., Cummins, K. M., McManus, J., Berelson, W. M., Smith, G. and Spagnoli, F., "Methods for measuring benthic nutrient flux on the California Margin: comparing shipboard core incubation to in situ lander results," Limnol. and Oceanogr.: Methods, 2, 146-159(2004). https://doi.org/10.4319/lom.2004.2.146
  49. Bartoli, M., Nizzoli, D. and Viaroli, P., "Microphytobenthos activity and fluxes at the sediment-water interface: interactions and spatial variability," Aquat. Ecol., 37, 341-349(2003). https://doi.org/10.1023/B:AECO.0000007040.43077.5f
  50. Santschi, P., Hohener, P., Benoit, G. and Buchholtz-ten Brink, M., "Chemical processes at the sediment-water interface," Mar. Chem., 30, 269-315(1990). https://doi.org/10.1016/0304-4203(90)90076-O
  51. Nicholson, G. J., Longmore, A. R. and Berelson, W. M., "Nutrient fluxes measured by two types of benthic chamber," Mar. and Freshwater Res., 50(6), 567-572(1999). https://doi.org/10.1071/MF98047
  52. Forja, J. M. and Gomez-Parra, A., "Measuring nutrient fluxes across the sediment-water interface using benthic chambers," Mar. Ecol. Prog. Series, 164, 95-105(1998). https://doi.org/10.3354/meps164095
  53. Miller-Way, T., Boland, G. S., Rowe, G. T. and Twilley, R. R.. "Sediment oxygen consumption and benthic nutrient fluxes on the Louisiana continental shelf: a methodological comparison," Estuaries, 17, 809-815(1994). https://doi.org/10.2307/1352749
  54. Muller, B., Marki, M., Dinkel, C., Stierli, R. and Wehrli, B., "In situ measurements in lake sediments using ion-selective electrodes with a profiling lander system," Environmental Electrochemistry - Analyses of Trace Element Biogeochemistry, Taillerfert M. and Rozan, T. F. (Eds), Americal Chemical Society, Washington DC, pp. 126-143(2002).
  55. Stahl, H., Tengberg, A., Brunnegard, J., Bjornbom, E., Forbes, T. L., Josefson, A. B., Kaberi, H. G., Karle Hassellov, I. M., Olsgard, F., Roos, P. and Hall, P. O. J., "Factors influencing organic carbon recycling and burial in Sakgerrak sediments," J. Mar. Res., 62, 867-907(2004). https://doi.org/10.1357/0022240042880873
  56. Chau, K. W., "Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong," Adv. Environ. Res., 6, 135-142(2002). https://doi.org/10.1016/S1093-0191(00)00075-7
  57. Utley, B. C., Vellidis, G., Lowrance, R. and Smith, M. C., "Factors affecting sediment oxygen demand dynamics in blackwater streams of Georgia's coastal plain," J. Am. Water Resour. Assoc., 44(3), 742-753(2008). https://doi.org/10.1111/j.1752-1688.2008.00202.x
  58. Shim, J. H., Kang, Y.-C. and Choi, J.-W., "Chemical fluxes at the sediment-water interface below marine fish cages on the coastal waters off Tong-Young, south coast of Korea," The Sea, J. Korean Soc. Oceanogr., 2(2), 151-159(1997).
  59. Lee, J. S., Bahk, K.-S., Khang, B.-J., Kim, Y.-T., Bae, J. H., Kim, S.-S., Park, J. J. and Choi, O.-I., "The Development of a benthic chamber (BelcI) for benthic boundary layer studies" The Sea, J. Korean Soc. Oceanogr., 15(1), 41-50(2010).
  60. Kang, Y.-C. and Shim, J. H., "A device for the in situ measurement of benthic chemical fluxes in a shallow coastal environment: A benthic flux chamber for diver operation," Ocean Res., 19(1), 63-70(1997).
  61. Lee, J. S., An, S.-U., Park, Y.-G., Kim, E., Kim, D., Kwon, J. N., Kang, D.-J. and Noh, J.-H., "Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea," Ocean Sci. J., 50(3), 581-588(2015). https://doi.org/10.1007/s12601-015-0053-x
  62. Nürnberg, G. K., "A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: Laboratory incubation verses in situ hypolimnetic phosphorus accumulation," Limnol. and Oceanogr., 32, 1160-1164(1987). https://doi.org/10.4319/lo.1987.32.5.1160
  63. Jensen, H. S., Kristensen, P., Jeppesen, E. and Skytthe, A., "Iron:phsphorus ratio in surface sediment as indicator of phosphate release from aerobic sediments in shallow lakes," Hydrobiol., 235/236, 731-743(1992). https://doi.org/10.1007/BF00026261
  64. Krivtsov, V., Sigee, D. C., Bellinger, E. G. and Porteous, G., "Determination of P release from Rostherne Mere sediment cores," Acta Hydrochim. et Hydrobiol., 29, 111-117(2001). https://doi.org/10.1002/1521-401X(200109)29:2/3<111::AID-AHEH111>3.0.CO;2-1
  65. Jahnke, R. A. and Jahnke, D. B., "Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter," Deep-Sea Res. I, 47, 1405-1428(2000). https://doi.org/10.1016/S0967-0637(99)00118-1
  66. Rowe, G. T., Boland, G. S., Escobar Briones, E. G., Cruz-Kaegi, M. E., Newton, A., Piepenberg, D., Walsh, I. and Deming, J., "Sediment community biomass and respiration in the Northeast Water Plynay, Greenland: a numerical simulation of benthic lander and spade core data," J. Mar. Syst., 10, 497-515(1997). https://doi.org/10.1016/S0924-7963(96)00065-6
  67. Belley, R., Snelgrove, P. V. R., Archambault, P. and Juniper, S. K., "Environmental drivers of benthic flux variation and ecosystem functioning in Salish Sea and northeast Pacific sediments," PLoS ONE, 11(3), e0151110, doi:10.1371/journal.pone.0151110(2016).
  68. Sundback, K., Miles, A., Hulth, S., Pihl, L., Engstrom, P., Selander, E. and Svenson, A., "Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays," Mar. Ecol. Prog. Series, 246, 115-126(2003). https://doi.org/10.3354/meps246115
  69. Alonso-Perez, F. and Castro, C. G., "Benthic oxygen and nutrient fluxes in a coastal upwelling system (Ria de Vigo, NW Iberian Peninsula): seasonal trends and regulating factors," Mar. Ecol. Prog. Series, 511, 17-32(2014). https://doi.org/10.3354/meps10915
  70. Cowan, J. L. W., Pennock, J. R. and Boynton, W. R., "Seasonal and interannual patterns of sediment-water nutrient and oxygen flux in Mobile Bay, Alabama (USA): Regulating factors and ecological significance," Mar. Ecol. Prog. Series, 141, 229-245(1996). https://doi.org/10.3354/meps141229
  71. Esten, M. E. and Wagner, K. J., "Investigation of benthic phosphorus flux controls in Lake Waco, Texas," Lake and Reservoir Manage., 26, 114-122(2010). https://doi.org/10.1080/07438141.2010.499097
  72. Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J. C., Michel, E., Becque, S. and van Weering, T. C. E., "Evidence for changes in the North Atlantic Deep Water linked to meltwater surge during the Heinrich events," Earth Planetary Sci. Lett., 146, 13-27(1997). https://doi.org/10.1016/S0012-821X(96)00192-6
  73. Ziadat, A. H. and Berdanier, B. W., "Stream depth significance during in situ sediment oxygen demand measurements in shallow streams," J. Am. Water Resour. Assoc., 40(3), 631-638(2004). https://doi.org/10.1111/j.1752-1688.2004.tb04448.x
  74. Holland, D., Cook, P., Beardall, J. and Longmore, A., "Gippsland Lakes 'snapshot' - Nutrient Cycling and phytoplankton population dynamics," A report prepared for the Gippsland Lakes and Catchment Task Force (http://gcb.vic.gov.au/gippsland-lakes/), Gippsland Coastal Board, p. 22(2009).
  75. Longhi, D., Bartoli, M., Nizzoli, D. and Viaroli, P., "Benthic processes in fresh water fluffy sediments undergoing resuspension," J. Limnol., 72(1), 1-12(2013).
  76. Barcelona, M. J. and Wang. W., Usefulness of sediment oxygen demand as a tool for impoundment management, Research Report No. 169, Water Resource Center, University of Illinois(1982).
  77. Glud, R. N., Berg, P., Fossing, H. and Jorgensen, B. B., "Effect of the diffusive boundary layer on benthic mineralization and $O_2$ distribution: A theoretical model analysis," Limnol. and Oceanogr., 52(2), 547-557(2007). https://doi.org/10.4319/lo.2007.52.2.0547
  78. Jorgensen, B. B. and Des Marais, D. J., "The diffusive boundary layer of sediment: Oxygen microgradients over a microbial mat," Limnol. and Oceanogr., 35(6), 1343-1355(1990). https://doi.org/10.4319/lo.1990.35.6.1343
  79. Kristensen, E., "Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals," Hydrobiol., 426, 1-24(2000). https://doi.org/10.1023/A:1003980226194
  80. Jorgensen, B. B. and Revsbech, N. P., "Diffusive boundary layers and the oxygen uptake of sediments and detritus," Limnol. and Oceanogr., 30(1), 111-122(1985). https://doi.org/10.4319/lo.1985.30.1.0111
  81. Kadlec, R. H. and Reddy, K. R., "Temperature effects in treatment wetlands," Water Environ. Res., 73(5), 543-557(2001). https://doi.org/10.2175/106143001X139614
  82. Bowman, G. T. and Delfino, J. J., "Sediment oxygen demand techniques: A review and comparison of laboratrory and in situ systems," Water Res., 14, 491-499(1980). https://doi.org/10.1016/0043-1354(80)90215-8
  83. Sheibley, R. W. and Paulson, A. J., Quantifying benthic nitrogen fluxes in Puget Sound, Washington-A review of available data: US. Geological Survey Scientific Investigations Report 2014-5033, U.S. Geological Survey, Virginia, p. 44(2014).
  84. Seitzinger, S. P., "Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance," Limnol. and Oceanogr., 33(4, part 2), 702-724(1988).
  85. Henriksen, K. and Kemp, W. M., "Nitrification in estuarine and coastal marine sediments," Nitrogen Cycling in Coastal Marine Environments: SCOPE 33, Blackburn, T. H. and Sorensen, J. (Eds), John Wiley & Sons Ltd., pp. 207-249(1988).
  86. Jensen, H. S. and Andersen, F., "Importance of temperature, nitrate and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes," Limnol. and Oceanogr., 37, 577-589(1992). https://doi.org/10.4319/lo.1992.37.3.0577
  87. Froelich, P. N., "Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism," Limnol. and Oceanogr., 33, 649-668(1988).
  88. Ward, B. B., "Nitrification," Reference Module in Earth Systems and Environmental Sciences, Elsevier, http://dx.doi.org/10.1016/B978-0-12-409548-9.00697-7(2013).
  89. Gerardi, M. H., Wastewater Bacteria, John Wiley & Sons, Inc., New Jersey; p. 272(2006).
  90. Gunnars, A., Blomqvist, S., Johansson, P. and Andersson, C., "Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium," Geochim. et Cosmochim. Acta, 66, 745-758(2002). https://doi.org/10.1016/S0016-7037(01)00818-3
  91. Lehtoranta, J., Ekholm, P. and Pitkanen, H., "Coastal eutrophication thresholds: A matter of sediment microbial processes," Ambio, 38(6), 303-308(2009). https://doi.org/10.1579/09-A-656.1
  92. Sten-Knudesen, O., Biological Membranes: Theory of transport, potentials and electric impulses, Cambridge University Press, Cambridge, p. 696(2002).
  93. Giblin, A. E., Tobias, G. R., Song, B., Weston, N., Banta, G. T. and Rivera-Monroy, V. H., "The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems," Oceanogr., 26(3), 124-131(2013). https://doi.org/10.5670/oceanog.2013.54
  94. Herbert, R. A., "Nitrogen cycling in coastal marine ecosystems," FEMS Microbiol. Rev., 23, 563-590(1999). https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  95. Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. and Widdicombe, S., "Bioturbation: impact on the marine nitrogen cycle," Biochem. Soc. Trans., 39, 315-320(2011). https://doi.org/10.1042/BST0390315

Cited by

  1. Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.613