DOI QR코드

DOI QR Code

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration

항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석

  • Received : 2017.03.13
  • Accepted : 2017.05.17
  • Published : 2017.09.01

Abstract

Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

광학 탑재 장비는 다수의 광학 부품 및 검출기로 구성되며 목표물 탐지와 분류를 목적으로 항공기, 전차 및 군함에 탑재되어 운용된다. 수 km 고도에서 운용되는 항공용 광학 탑재 장비는 항공기에서 발생하는 진동 때문에 구조 안정성과 광학 성능 저하가 발생한다. 설계 단계에서 진동 환경조건에 대한 탑재 장비의 구조 안정성 및 광학 성능 검증이 요구된다. 본 연구에서는 진동 환경조건을 시험 표준 규격서와 항공기에서 발생하는 진동을 측정하여 분석하였다. 진동 환경조건은 구조 안정성 검증을 위한 내구도 진동조건과 광학 성능 검증을 위한 운용 진동조건으로 구분하였다. 구조 안정성을 고유진동수 해석, 내구도 진동 응답해석 및 정해석을 통해 검증하였다. 광학 성능을 운용 진동 응답해석 결과를 광학 설계/분석 프로그램에 적용하여 검증하였다.

Keywords

References

  1. Dunno, K., 2014, "Analysis of In-Flight Vibration of a Single Engine Propeller Aircraft," International Journal of Advanced Packaging Technology, Vol. 2, No. 1, pp. 105-111. https://doi.org/10.23953/cloud.ijapt.12
  2. Dunno, K. and Batt, G., 2009, "Analysis of In-flight Vibration of a Twin Engine Turbo Propeller Aircraft," Packaging Technology and Science, Vol. 22, No. 8, pp. 479-485. https://doi.org/10.1002/pts.872
  3. Stupar, S., Simonovic, A. and Jovanovic, M., 2012, "Measurement and Analysis of Vibrations on the Helicopter Structure in order to Detect Defects of Operating Elements," Scientific Technical Review, Vol. 62, No. 1, pp. 58-63.
  4. Das, B. K. and Kumar, P., 2015, "Tailoring of Specifications for Random Vibration Testing of Military Airborne Equipments from Measurement," International Journal of Research in Engineering and Technology, Vol. 4, No. 12, pp. 293-299.
  5. Genberg, V. L., Doyle, K. B. and Michels, G. J., 2004, "Optical Performance as a Function of Dynamic Mechanical Loading," Proceedings of the SPIE, Vol. 5178, No. 1, pp. 14-19.
  6. Genberg, V. L., Michels, G. J. and Doyle, K. B., 2011, "Integrated Modeling of Jitter MTF due to Random Loads," Proceedings of the SPIE, Vol. 8127, No. 4, p. 81270H.
  7. Bonin, D. and McMaster, B., 2007, "Closed Loop Optimization of Opto-Mechanical Structure via Mechanical and Optical Analysis Software," Proceedings of the SPIE, Vol. 6550, pp. 65500X.
  8. MIL-STD-810G, 2008, "Environmental Engineering Considerations and Laboratory Tests, Method 514.6 Vibration," pp. 18-20.
  9. Irvine, T., 2012, Equivalent Static Loads for Random Vibration, Vibrationdata, pp. 3-7.
  10. NASA-STD-5001B, 2014, "Structural Design and Test Factors of Safety for Spaceflight Hardware," National Aeronautics and Space Administration, Washington, DC, pp. 17-18.