DOI QR코드

DOI QR Code

무전해 Ni 도금을 위한 양극 산화막위에 스크린 인쇄된 Ag 페이스트 패턴의 정밀도 개선

Accuracy Improvement of Screen Printed Ag Paste Patterns on Anodized Al for Electroless Ni Plating

  • 이연승 (한밭대학교 정보통신공학과) ;
  • 나사균 (한밭대학교 신소재공학과)
  • Lee, Youn-Seoung (Department of Information and Communication Engineering, Hanbat National University) ;
  • Rha, Sa-Kyun (Department of Advanced Materials Engineering, Hanbat National University)
  • 투고 : 2017.04.19
  • 심사 : 2017.06.19
  • 발행 : 2017.08.27

초록

We used an etching process to control the line-width of screen printed Ag paste patterns. Ag paste was printed on anodized Al substrate to produce a high power LED. In general, Ag paste spreads or diffuses on anodized Al substrate in the process of screen printing; therefore, the line-width of the printed Ag paste pattern increases in contrast with the ideal line-width of the pattern. Smudges of Ag paste on anodized Al substrate were removed by neutral etching process without surface damage of the anodized Al substrate. Accordingly, the line-width of the printed Ag paste pattern was controlled as close as possible to the ideal line-width. When the etched Ag paste pattern was used as a seed layer for electroless Ni plating, the line width of the plated Ni film was similar to the line-width of the etched Ag paste pattern. Finally, in pattern formation by Ag paste screen printing, we found that the accuracy of the line-width of the pattern can be effectively improved by using an etching process before electroless Ni plating.

키워드

참고문헌

  1. S. K. Rha, H. C. Kim and Y. S. Lee, J. Nanosci. Nanotech., 14, 8615 (2014). https://doi.org/10.1166/jnn.2014.9958
  2. S. K. Rha, Y. R. Cho, J. S. Yoon and Y. S. Lee, J. Nanosci. Nanotech., 13, 6307 (2013). https://doi.org/10.1166/jnn.2013.7717
  3. S. K. Rha and Y. S. Lee, J. Nanosci. Nanotech., 15, 2422 (2015). https://doi.org/10.1166/jnn.2015.10253
  4. K. M. Kim, S. H. Shin, Y. K. Lee, S. M. Choi and Y. S. Kwon, Electron. Lett., 44, 24 (2008). https://doi.org/10.1049/el:20081391
  5. S. Liu and X. Luo, LED Packaging for Lighting Applications; Design, Manufactureing and Testing (Chemical Industry Press, Singapore) p. 160 (2011).
  6. J. H. Lee, Y. H. Kim, U. C. Jung and W. S. Chung, Mater. Chem. Phys., 141, 680 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.058
  7. Daniel Inns, Energy Procedia, 98, 23 (2016). https://doi.org/10.1016/j.egypro.2016.10.077
  8. M. R. Somalu, A. Muchtar, W. Ramli, W. Daud and N. P. Brandon, Renew. Sustain. Energy Rev., 75, 426 (2017). https://doi.org/10.1016/j.rser.2016.11.008
  9. A. Khanna, P. K. Basu, A. Filipovic, V. Shanmugam, C. Schmiga, A. G. Aberle and T. Mueller, Sol. Energy Mater. Sol. Cells, 132, 589 (2015). https://doi.org/10.1016/j.solmat.2014.10.018
  10. B. G. Park, K. H. Jung and S. B. Jung, J. Alloys Compd., 699, 1186 (2017). https://doi.org/10.1016/j.jallcom.2016.12.295
  11. A. Bouyelfane, A. Zerga, Mater. Sci. Semicond. Process., 26, 312 (2014). https://doi.org/10.1016/j.mssp.2014.05.012
  12. Z. Chu, J. Peng, and W. Jin, Sens. Actuators, B: Chemical, 243, 919 (2017). https://doi.org/10.1016/j.snb.2016.12.022
  13. U. Mannl, C. V. D. Berg, B. Magunje, M. Harting, D. T. Britton, S. Jones, M. J. V. Staden, and M. R. Scriba, Nanotechnology, 25, 094004 (2014). https://doi.org/10.1088/0957-4484/25/9/094004
  14. R. Faddoul, N. R. Bruas and A. Blayo, Mater. Sci. Eng. B, 177, 1053 (2012). https://doi.org/10.1016/j.mseb.2012.05.015
  15. K. Park, D. Seo and J. Lee, Colloids Surf. A: Physicochem. Eng. Aspects, 313-314, 351 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.147
  16. S. G. Park, Y. S. Lee and S. K. Rha, J. Korean Phys. Soc., 69, 164 (2016). https://doi.org/10.3938/jkps.69.164