DOI QR코드

DOI QR Code

Study of Settling Properties of Cohesive Sediments

점착성 유사의 침강특성에 관한 연구

  • Choi, In Ho (Department of Civil Engineering, Seoil University) ;
  • Kim, Jong Woo (Department of Civil Engineering, Seoil University)
  • Received : 2017.07.03
  • Accepted : 2017.07.21
  • Published : 2017.08.31

Abstract

This paper is to understand the settling properties of cohesive sediments under effects of ions in turbulent flow. The experiments were conducted using a miniature annular flume(mini flume) with a free water surface. Silica was used as sediment of experiment. The suspended concentrations were measured by using a CCD-Camera. Settling of silica($SiO_2$) was allowed to occur under various shear stresses in a concentration of 7g/L. At condition of pH 4.2 and high NaCl concentration, the floc size D of silica was larger than D at condition of pH6.8 with the bed shear stress increasing. The settling velocity $W_s$ of silica was higher at condition of 10g NaCl/L than $W_s$ at condition of pH4.2. Comparison of measured concentration-time curves and concentration-time curves calculated by this study showed similar tendency in flow under effects of ions.

본 연구의 목적은 난류흐름에서 이온의 영향아래 점착성 유사의 침강특성을 이해하는데 있다. 실험연구는 자유수면을 가지는 소형 환형수조에서 실시하였다. 실험에서 유사 재료로써 실리카($SiO_2$)를 사용하였으며, 부유농도는 CCD-Camera로 측정하였다. 실리카의 침강실험은 7g/L의 농도일 경우 다양한 바닥전단응력을 부여해 실시되었다. 바닥전단응력이 증가하게 되면 실리카의 플럭(floc)입자 입경(D)은 pH6.8에서보다 pH4.2와 높은 NaCl 농도에서 더 크다. 실리카의 침강속도($W_s$)는 pH4.2에서보다 10g NaCl/L에서 더 높다. 본 연구에서 예측된 농도-시간 곡선은 실제 흐름에서 이온의 영향아래 실측된 농도-시간 곡선과 잘 일치하는 것으로 나타났다.

Keywords

References

  1. Cheng, NS. (1997). A simplified settling velocity formula for sediment particle. J. of Hydraulic Engineering, ASCE, 123(2), 149-152. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)
  2. Choi, IH and Kim, JW. (2014). Experimental study on erosional behaviour of fine-grained sediments. J. of Korean Society Hazard Mitigation, 14(3), pp. 863-872. [Korean Literature]
  3. Choi, IH and Kim, JW. (2015). Depositional behavior of fine-grained particles with varying cohesiveness. J. of Korean Society Hazard Mitigation, 15(4), pp. 251-259. [Korean Literature] https://doi.org/10.9798/KOSHAM.2015.15.4.251
  4. Choi, IH and Kim, JW. (2016). A study on effects of salinity on deposition and erosion of cohesive sediments. J. of Korean Society Hazard Mitigation, 16(5), pp. 317-324. [Korean Literature] https://doi.org/10.9798/KOSHAM.2016.16.5.317
  5. Choo, TH, Kim, YH, Park BS, Kwon, JW and Cho, HM. (2017). Proposal for estimation method of the suspended solid concentration in EIA. J. of Wetlands Research, 19(1), pp. 30-36. [Korean Literature] https://doi.org/10.17663/JWR.2017.19.1.030
  6. Hwang, KN, Kim, HM and Ahn, IJ. (2008). A laboratory study on erosional properties of fine cohesive sediments from Saemankeum artificial lake. J. of Korea Water Resources Association, 41(5), pp. 473-482. [Korean Literature] https://doi.org/10.3741/JKWRA.2008.41.5.473
  7. Kajihara, M. (1971). Settling velocity and porosity of large suspended particle. J. of the Oceanorgraphical Society of Japan, 27(4), pp. 158-162. https://doi.org/10.1007/BF02109135
  8. Kim, JW and Nestmann, F. (2009). Settling behavior of fine-grained materials in flocs. J. Hydraul. Res. 47(4), pp. 492-502. https://doi.org/10.1080/00221686.2009.9522025
  9. Krone, RB. (1962). Flume studies of the transport of sediment in estuarial shoaling processes. Final Rep., Hydr. Engr. Lab. and Sanitary Engr. Res. Lab., Univ. of California, Berkeley, June.
  10. Lick, W and Huang, H. (1993). Flocculation and the physical properties of flocs. In: Coastal and Estuarine Studies 42, Nearshore and Estuarine Cohesive Sediment Transport, 21-39. American Geophysical Union.
  11. Lick, W, Lick, J and Ziegler, CK. (1992). Flocculation and its effect on the vertical transport of fine-grained sediments. Hydrobiologia, 235/236(1), pp. 1-16. https://doi.org/10.1007/BF00026196
  12. Maggi, F, Mietta, F and Winterwer, JC. (2007). Effect of variable fractal dimension on the floc size distribution suspended cohesive sediment. J. Hydrology 343, pp. 43-55. https://doi.org/10.1016/j.jhydrol.2007.05.035
  13. Mehta, AJ and Partheniades, E. (1975). An investigation of the depositional properties of flocculated fine sediments. J. of Hydraulic Research 13(4), pp. 361-381. https://doi.org/10.1080/00221687509499694
  14. Partheniades, E. (1992). Estuarine sediment dynamics and shoaling processes. In. Herbick, J. (ed), Handbook of Coastal and Ocean Engineering, 3, pp. 985-1071.
  15. Son, M. (2011). Measurement of settling velocity, size and density and analysis of fractal dimension of cohesive sediment. Korean J. Limnol., 44(1), pp. 58-65. [Korean Literature]
  16. Stokes, GG. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambrige Philosophical Society 9(8), pp. 287-298.
  17. Van Leussen, W. (1994). Estuarine macroflocs and their role in fine-grained sediment transport. Ph.D. Thesis, University Utrecht.
  18. Von Karman, T. (1930). Mechanische Ahnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Fachgruppe 1(Mathematik), 5, pp. 58-76. [German Literature]
  19. Whitehouse, UG, Jeffrey LM and Debbrecht JD. (1960). Differential settling tendencies of clay minerals in saline waters. In: A. Swineford (ED.) Clays and Clay Minerals, 7th, Washington DC, 195. Pergamon Press, New York, pp. 1-79.
  20. Winterwerp, JC. (1998). A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul. Res. 36(3), 309-326. https://doi.org/10.1080/00221689809498621
  21. Zanke, U. (1977). Berechnung der Sinkgeschwindigkeit von sediment. Band 46 der Reihe Mitteilungen des Franzius-Instituts fuer Wasserbau und Kuensteningenieurwesen der TU Hannover. [German Literature]
  22. Zhu, Z, Wang, H, Yu, J and Dou, J. (2016). On the kaolinite floc size at the steady state of flocculation in a turbulent flow. PLoS ONE 11(2): e0148895. doi:10.1371/journal.pone.0148895.