DOI QR코드

DOI QR Code

The Method of Certificating Waterproof Effect for Consecutive Column-Wall Mass in Underground

주열식 지중연속벽체의 차수효과 확인 방안

  • Koh, Yong-IL (Department of Civil Engineering, Chodang University)
  • Received : 2017.07.10
  • Accepted : 2017.08.09
  • Published : 2017.09.01

Abstract

On the flow of groundwater, the effect of consecutive column-wall in underground as a hydraulic barrier could be identified by conventional geotechnical methods ((1)visualiy identification of wall mass after underground excavating, (2)uniaxial compressive strength test for core of wall mass in underground, (3)in-situ permeability test in the hole after coring wall mass). However, for the cut off the leakage or infiltration of very high concentrated leachate from the waste landfill or the contaminated groundwater, the waterproof effect of consecutive column-wall in underground should be verified more objectively, by in-situ measuring of pH, temperature and salinity. and by evaluating of their consistency and similarity throughout analyzing the characteristics of basic components and their profiles through the series of chemical experiments. Furthermore, its waterproof effect could be verified additionally throughout deciding the similarity more simply by comparing the general distribution patterns including the difference of high and low peaks from the chromatograms using GC-MS for surrounding groundwater.

일반적인 지하수에 대해서는 지반공학적 방법((1)지반을 굴착한 후 지중연속벽체의 육안 확인, (2)벽체의 코아 채취 후 일축압축강도시험, (3)벽체 코아 채취 시 현장 투수시험)으로 주열식 지중연속벽체의 차수효과를 확인할 수 있다. 그러나, 폐기물 매립장내에서 발생하는 침출수와 같은 고농도 오염수 유출이나 침투의 차단에 대해서는 주변 지하수 등을 대상으로 현장에서 pH, 수온, 염분 농도 등을 측정하고 이들의 성분시험을 실시하여 기본 성분 및 성분비 등의 특성을 분석한 후 일치성 유사성을 판정하며, GC-MS를 이용하여서는 이들 시료수의 크로마토그램에 대한 피크의 높고 낮음의 차이 등 전반적인 분포패턴을 비교하여 간편하게 유사성 판정을 추가적으로 실시함으로써 객관성 있게 주열식 지중연속벽체의 차수효과를 확인하여야 한다.

Keywords

References

  1. 국토교통부 (2016), 구조물기초설계기준.
  2. 한라건설기술연구소 (1996), 흙막이 구조물 공사의 안정성 확보방안 연구(I), pp. 20-41.
  3. 地盤改良の調査․設計から施工まで 編集委員會 (1978), 現場技術者のための土と基 礎シリーズ 3 : 地盤改良の調査․設計から施工まで, 三美印刷株式會社, 日本 東京, pp. 33-73.
  4. Choi, J. J., Choi, Y. W. and Kim, G. Y. (2000), Materials in civil engineering, Gi Moon Dang (Book Company), Seoul, pp. 137-180 (In Korean).
  5. Hansbo, S. (1994), Foundation engineering, developments in geotechnical engineering, Elsevier Press, Vol. 95, pp. 450-455.
  6. Hunt, R. E. (1983), Geotechnical engineering investigation manual, McGraw-Hill Book Company, New York, pp. 149-160.
  7. Koh, Y. I. (2012), The environmental analyzing method of mixed coal ash in ash pond to recycle as a construction material, Journal of the Korean Geo-Environmental Society, Vol. 13, No. 12, pp. 75-79 (In Korean).
  8. Koh, T. H., LEE, S. J., Shin, M. H., Kim, B. S., Lee, J. K. and Lee, T. Y. (2010), Evaluation for contents of contaminants and leaching characteristics of bottom ash, Journal of The Korean Geo-Environmentral Society, Vol. 11, No. 6, pp. 77-83 (In Korean).
  9. Korea Ministry of Environment (2009), The Korea official fixed test for waste, Dong-Hwa Geesool Books, pp. 623-680 (In Korean).
  10. Korea Ministry of Environment (2011), Waste Management Law (In Korean).
  11. Lambe, T. W. and Whitman, R. V. (1986), Soil Mechanics, SI Version, John Wiley & Sons, Inc., Seoul, pp. 27-51.