DOI QR코드

DOI QR Code

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG

나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성

  • Hwang, Jin Ung (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2017.05.13
  • Accepted : 2017.06.14
  • Published : 2017.10.01

Abstract

In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

본 연구에서는 활성탄과 납 전구체를 사용하여 나노 Pb/AC 복합소재를 제조한 후, 울트라 전지용 음극소재의 전기화학적 특성을 조사하였다. 나노 Pb/AC 복합소재는 활성탄에 나노 Pb 입자를 흡착시킨 후 감압 수세하여 제조하였다. 제조된 복합소재의 물리적 특성은 SEM, BET, EDS를 통해 분석하였으며, $1740m^2/g$, 1.95 nm의 비표면적과 평균 기공크기를 얻었다. 울트라 전지의 음극은 납 극판에 나노 Pb/AC를 딥코팅하여 제조되었다. 울트라 전지는 이산화납을 사용한 양극과 나노 Pb/AC 복합소재 음극을 사용하였으며 전해액은 5M의 황산용액($1.31g/cm^3$)을 사용하였다. 전기화학적 성능은 충 방전, 순환전압전류, 임피던스, 사이클 테스트를 통해 조사되었다. 제조된 나노 Pb/AC를 이용한 울트라 배터리는 기존의 납 축전지와 AC를 코팅한 납 축전지보다 개선된 초기 용량과 사이클 특성을 보였다. 이러한 실험 결과로부터 나노 Pb/AC의 적절한 첨가가 수소발생 반응이 억제됨에 따라 용량 및 장기 사이클 안정성을 향상시킴을 알 수 있었다.

Keywords

References

  1. Karden, E., Ploumen, S., Fricke, B., Miller, T. and Snyder, K., "Energy Storage Devices for Future Hybrid Electric Vehicles," J. Power Sources, 168(1), 2-11(2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
  2. Lam, L. T. and R. Louey., "Development of Ultra-battery for Hybrid-electric Vehicle Applications," J. Power Source, 158(2), 1140-1148(2006). https://doi.org/10.1016/j.jpowsour.2006.03.022
  3. Lam, L. T., Haigh, N. P., Phyland, C. G. and Urban, A. J., "Failure Mode of Valve-regulated Lead-acid Batteries Under High-rate Partial-state-of-charge Operation," J. Power Source, 133(1), 126-134(2004). https://doi.org/10.1016/j.jpowsour.2003.11.048
  4. Lam, L. T., Louey, R., Haigh, N. P., Lim, O. V., Vella, D. G., Phyland, C. G., Vu, L. H., Furukawa, J., Takada, T., Monma, D. and Kano, T., "VRLA Ultrabattery for High-rate Partial-state-ofcharge Operation," J. Power Source, 174(1), 16-29(2007). https://doi.org/10.1016/j.jpowsour.2007.05.047
  5. Nakamura, K., Shiomi, M., Takahashi, K. and Tsubota, M., "Failure Modes of Valve-regulated Lead/acid Batteries," J. Power Source, 59(1-2), 153-157(1996). https://doi.org/10.1016/0378-7753(95)02317-8
  6. Kim, I. G., Oh, S. H. and Kang, H. Y., "The Effect of Tetrabasic Lead Sulfate on the Aging of VRLA (Valve Regulated Lead-Acid) Batteries," Korean Chem. Eng. Res., 30(2), 172-181(1992).
  7. Li, L., Zhu, X., Yang, D., Gao, L., Liu, J., Kumar, R. V. and Yang, J., "Preparation and Characterization of Nano-structured Lead Oxide from Spent Lead Acid Battery Paste," J. Hazard. Mater., 203, 274-282(2012).
  8. Xiang, J., Ding, P., Zhang, H., Wu, X., Chen, J. and Yang, Y., "Beneficial Effects of Activated Carbon Additives on the Performance of Negative Lead-acid Battery Electrode for High-rate Partial-stateof-charge Operation," J. Power Source, 241, 150-158(2013). https://doi.org/10.1016/j.jpowsour.2013.04.106
  9. Hong, B., Jiang, L., Xue, H., Liu, F., Jia, M., Li, J. and Liu, Y., "Characterization of Nano-lead-doped Active Carbon and its Application in Lead-acid Battery," J. Power Source, 270, 332-341 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.145
  10. Zou, X., Kang, Z., Shu, D., Liao, Y., Gong, Y., He, C. and Zhong, Y., "Effects of Carbon Additives on the Performance of Negative Electrode of Lead-carbon Battery," Electrochim. Acta, 151, 89-98(2015). https://doi.org/10.1016/j.electacta.2014.11.027
  11. Cooper, A., Furakawa, J., Lam, L. and Kellaway, M., "The Ultrabattery-A New Battery Design for a New Beginning in Hybrid Electric Vehicle Energy Storage," J. Power Source, 188(2), 642-649(2009). https://doi.org/10.1016/j.jpowsour.2008.11.119
  12. Zhao, L., Chen, B. and Wang, D., "Effects of Electrochemically Active Carbon and Indium (III) Oxide in Negative Plates on Cycle Performance of Valve-regulated Lead-acid Batteries During Highrate Partial-state-of-charge Operation," J. Power Source, 231, 34-38(2013). https://doi.org/10.1016/j.jpowsour.2012.12.083