DOI QR코드

DOI QR Code

The Electronic and Thermoelectric Properties of Si1-xVx Alloys from First Principles

  • Received : 2017.06.07
  • Accepted : 2017.08.21
  • Published : 2017.09.30

Abstract

The effect of temperature and vanadium metal concentration on the electronic and thermoelectric properties of Si in the diamond cubic structure has been investigated using a combination of density functional theory simulations and the semi classical Boltzmann's theory. The BotzTrap code within the constant relaxation time approximation has been used to obtain the Seebeck coefficient and other transport properties of interest for alloys of the structure $Si_{1-x}V_x$, where x is 0, 0.125, 0.25, 0.375, and 0.5. The thermoelectric properties have been extracted for a temperature range of 300 K to 1,000 K. The general trend with V atom substitution for Si causes the Seeback coefficient to increase and the thermal conductivity to decrease for the various alloys. The optimum values are for $Si_5V_3$ and $Si_4V_4$ alloys for charge carrier concentrations of $10^{21}cm^{-3}$ in the mid temperature range of 500~800 K. This is a very desirable effect for a promising thermoelectric and the figure of merit ZT approaches 0.2 at 600 K for the p-type $Si_5V_3$ alloy.

Keywords

References

  1. Arita Y, Mitsuda S, Nishi Y, Matsui T, and Nagasaki T (2001) Thermoelectric properties of Rh-doped $Ru_2Si_3$prepared by floating zone melting method. J. Nucl. Mater. 294, 202. https://doi.org/10.1016/S0022-3115(01)00475-5
  2. Bell L E (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457-1461. https://doi.org/10.1126/science.1158899
  3. Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G (2012) High performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414-418. https://doi.org/10.1038/nature11439
  4. Gonze X, Rignanese G-M, Verstraete M, Beuken J-M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J-Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Douglas C, and Allan D C (2005) A brief introduction to the ABINIT software package Zeit. Kristallogr 220, 558-562.
  5. Gu J-J, Kuwabara K, Tanaka K, Inui H, Yamaguchi M, Yamamoto A, Ohta T, and Obara H (2002) Crystal structure and thermoelectric properties of ReSi1.75 silicide. MRS Proc. 753, 501.
  6. Hartwigsen C, Goedecker S, and Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641. https://doi.org/10.1103/PhysRevB.58.3641
  7. Heremans J P, Dresselhaus M S, Bell L, and Morelli D T (2013) When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471-473. https://doi.org/10.1038/nnano.2013.129
  8. Hicks L D and Dresselhaus M S (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631-16634. https://doi.org/10.1103/PhysRevB.47.16631
  9. Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, and Kanatzidis M G (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818-821. https://doi.org/10.1126/science.1092963
  10. Ivanenko L, Filonov A, Shaposhnikov V, Krivosheev A, Behr G, and Souptel D (2003) Thermoelectric properties of Mn-doped $Ru_2Si_3$. In: Proc. 22nd Int. Conf. Thermoelectrics, pp. 157-160 (IEEE).
  11. Jaiyaraman A, Kademane A B, and Molli M (2016) DFT study on the carrier concentration and temperature-dependent thermoelectric properties of antimony selenide. Indian Journal of Material Science Article ID 7296847, 7 pages.
  12. Lasance C J M (2006) Design, Number 4, Technical Data, Test & Measurement, Volume 12 [internet]. Available from: https://www.electronics-cooling.com/2006/11/the-seebeck-coefficient/.
  13. Madsen G K H and Singh D J (2006) A code for calculating band structure dependent quantities. Comput. Phys. Commun. 175, 67-71. https://doi.org/10.1016/j.cpc.2006.03.007
  14. Pei Y Z, Shi X, LaLonde A, Wang H, Chen L, and Snyder G J (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69. https://doi.org/10.1038/nature09996
  15. Perdew J P and Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244. https://doi.org/10.1103/PhysRevB.45.13244
  16. Ramanathan A A (2013) A DFT calculation of Nb and Ta (001) Surface Properties. JMP 4, 432-437. https://doi.org/10.4236/jmp.2013.43A060
  17. Ramanathan A A and Khalifeh J M (2017) Substrate matters: magnetic tuning of the Fe monolayer. JMMM 426, 450-453. https://doi.org/10.1016/j.jmmm.2016.11.096
  18. Yuli Y, Zhang G, Wang C, Peng C, Zhang P, Wang Y, and Ren W (2016) Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency. Scientific Reports 6, 29550. https://doi.org/10.1038/srep29550
  19. Zhang X and Zhao L-D (2015) Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics 1, 92-105. https://doi.org/10.1016/j.jmat.2015.01.001