DOI QR코드

DOI QR Code

Comparison of CO2 Removal Capabilities among Rectisol, SelexolTM, and Purisol Process for DME Synthesis and Separation Process

DME 합성 및 분리공정에서 CO2 제거를 위한 Rectisol 공정과 SelexolTM 및 Purisol 공정 사이의 성능비교

  • Noh, Jaehyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Park, Hoey Kyung (Department of Chemical Engineering, Kong Ju National University) ;
  • Kim, Dongsun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jungho (Department of Chemical Engineering, Kong Ju National University)
  • Received : 2017.07.03
  • Accepted : 2017.07.18
  • Published : 2017.09.30

Abstract

In the dimethyl ether (DME) synthesis and separation process, over 8% by mole of $CO_2$ is fed to the DME synthesis reactor which lowers DME productivity. Therefore, this work focused on the removal of $CO_2$ using three kinds of processes with physical absorbents by comparing the utility consumption through computer simulation of each process. Among the processes selected for comparison are Rectisol$^{(R)}$ process using methanol, Purisol$^{(R)}$ process using n-methyl pyrrolidone (NMP), and SelexolTM process using dimethyl ethers of polyethylene glycol (DEPG) as a solvent. As a result of this study, it was concluded that Purisol$^{(R)}$ process consumes the least energy followed by SelexolTM process. Therefore, it is considered that Purisol$^{(R)}$ process is the most suitable method to absorb $CO_2$ contained in the feed of DME synthesis reactor.

Dimethyl Ether (DME) 합성 및 분리공정에서 8% 이상의 $CO_2$가 DME 합성반응기로 유입되면 DME 생산성이 저하되는 문제가 발생된다. 따라서 본 연구에서는 DME 합성기로 유입되는 $CO_2$ 제거를 위한 방법으로 물리적 흡수제를 이용한 대표적인 세 가지 공정에 대해 전산모사를 통해 에너지 소모량을 서로비교 하였다. 비교 대상으로 선정한 공정으로는 메탄올을 사용하는 Rectisol$^{(R)}$ 공정, 폴리에틸렌글리콜 디메틸에테르(dimethyl ethers of polyethylene glycol, DEPG)를 사용하는 SelexolTM 공정 그리고 노말 메틸 피로리돈(n-methyl pyrrolidone, NMP)를 사용하는 Purisol$^{(R)}$ 공정으로 하였다. 각 공정에 대한 에너지 소모량을 비교해 본 결과 Rectisol$^{(R)}$ 공정 ${\gg}$ SelexolTM 공정 > Purisol$^{(R)}$ 공정 순으로 에너지가 많게 소모됨을 알 수 있었다. 그러므로 DME 제조공정에서 물리적 흡수제를 사용한 $CO_2$제거공정으로 가장 적합한 공정은 Purisol$^{(R)}$ 공정이라 판단된다.

Keywords

References

  1. Semelsberger, T. A., Borup, R. L., and Greene, H. L., "Dimethyl Ether (DME) as an Alternative Fuel," J. Power Sources, 156, 497-511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  2. Youn, J., Lee, M., Park, C., Hwang, I., Ha, J., and Kang, Y., "Feasibility Test of LPG Vehicles by Using DME-LPG Blends," J. Energy Eng., 24(4), 33-41 (2015). https://doi.org/10.5855/ENERGY.2015.24.4.033
  3. Oguma, M., "DME Standards Update & Overview," 6th International DME Conference, San Diego (2014).
  4. JIS K 2180-1, "Dimethylether for Fuels," Japanese Standard Association (2013).
  5. ASTM D7901, "Standard Specification for Dimethyl Ether for Fuel Purposes," ASTM International (2014).
  6. ISO 16861, "Petroleum Products - Fuels (Class F)- Specifications of Dimethyl Ether," International Organization for Standardization (2015).
  7. KS M 2078, "Determination of Hydrocarbons and Dimethyl Ether (DME) in Liquefied Petroleum Gases (LPG) and LPG-DME Mixtures - Gas Chromatography (GC)," Korean Agency for Technology and Standards (2013).
  8. Choi, C. W., Cho, W., Baek, Y. S., and Row, K. H., "Experimental Study on the Synthesis of Dimethyl Ether," J. Korean Ind. Eng. Chem., 17, 125 (2006).
  9. Mo, Y. G., Cho, W., and Baek, Y. S., "Development of Direct DME Synthesis Process," J. Korean Inst. Gas, 14, 41 (2010).
  10. Cho, D. H., Rho, J. H., Kim, D. S., and Cho, J. H., "A Study for Carbon Dioxide Removal Process Using Methanol Solvent in DME Manufacture Process," J. Korea Acad.-Ind., 14(3), 1502-1511 (2013).
  11. Kohl, A. L., and Nielsen, R. B., Gas Purification, 5th ed., Gulf Publishing Company, Houston, Texas (1997).
  12. Olajire, A. A., "$CO_2$ Capture and Separation Technologies for End-of-Pipe Applications - A review," Energy, 35, 2610-2628 (2010). https://doi.org/10.1016/j.energy.2010.02.030
  13. Karim, A. A., Abdel-Rahman Z. A., and Hadi, A. J., "Solubility Prediction of $CO_2$ in Several Physical Liquid Solvents using ChemCad and HYSYS Simulators," Diyala J. Eng. Sci., 356-373 (2010).
  14. UOP LLC, A Honeywell Company, "Meeting Staged $CO_2$ Capture Requirements with the UOP Selexol Process," UOP, 01-19 (2009).
  15. Renon, H., and Prausnitz, J. M., "Local Composition in Thermodynamic Excess Functions for Liquid Mixtures," AIChE J., 14(1) 135-144 (1968). https://doi.org/10.1002/aic.690140124
  16. Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., 27, 1197-1203 (1972). https://doi.org/10.1016/0009-2509(72)80096-4
  17. Twu, C. H., Bluck, D., Cunningham, J. R., and Coon, J. E., "A Cubic Equation of State with a New Alpha Function and New Mixing Rule," Fluid Phase Equil., 69, 33-50 (1991). https://doi.org/10.1016/0378-3812(91)90024-2
  18. Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse and Associating Molecules," Ind. Eng. Chem. Res., 29, 2284 (1990). https://doi.org/10.1021/ie00107a014
  19. Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse and Associating Molecules: Extention to Fluid Mixtures," Ind. Eng. Chem. Res., 30, 1994 (1991). https://doi.org/10.1021/ie00056a050
  20. Gross, J., and Sadowski, G., "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," Ind. Eng. Chem. Res., 40, 1244 (2001). https://doi.org/10.1021/ie0003887
  21. Senol, I., "Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions," Chem. Eng. Sci., 59, 1244 (2011).