DOI QR코드

DOI QR Code

A Study on a Compact Coupler between an Optical Fiber and a Grating-assisted Graphene-embedded Silicon Waveguide for a Wavelength-selective Photodetector

  • Heo, Hyungjun (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Sangin (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2017.08.03
  • 심사 : 2017.09.08
  • 발행 : 2017.10.25

초록

We proposed an integrated wavelength-selective photodetector based on a grating-assisted contradirectional coupler and a graphene absorption layer for a coarse wavelength division multiplexing (CWDM) communication system. The center wavelength of the absorption spectrum of the proposed device can be tuned simply by changing the period of the grating, and the proposed device structure is suitable to forming a cascaded structure. Therefore, an array of the proposed device of different grating periods can be used for simultaneous wavelength demultiplexing and signal detection in a CWDM communication system. Our theoretical study showed that the designed device with a grating length of $500{\mu}m$ could have an absorption of 95.1%, an insertion loss of 0.2 dB, and a 3 dB bandwidth of 7.5 nm, resulting in a -14 dB crosstalk to adjacent CWDM channels. We believe that the proposed device array can provide a compact and economic solution to receiver implementation in the CWDM system by combining functions of wavelength demultiplexing and signal detection.

키워드

참고문헌

  1. X. J. Leijtens, B. Kuhlow, and M. K. Smit, "Arrayed waveguide gratings," in Wavelength Filters in Fibre Optics, H. Venghaus, ed. (Springer, NewYork, USA, 2006).
  2. T. Numai, "Semiconductor wavelength tunable optical filters," Int. J. Nonlinear Opt. Phys. 2(4), 643-659 (1993). https://doi.org/10.1142/S0218199193000383
  3. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, "Microring-resonatorbased add-drop filters in SiN: fabrication and analysis," Opt. Express 12(7), 1437-1442 (2004). https://doi.org/10.1364/OPEX.12.001437
  4. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. S. J. Russell, "Novel add/drop filters for wavelength-divisionmultiplexing optical fiber systems using a Bragg grating assisted mismatched coupler," IEEE Photon. Technol. Lett. 8(12), 1656-1658 (1996). https://doi.org/10.1109/68.544709
  5. C. Riziotis and M. N. Zervas, "Design considerations in optical add/drop multiplexers based on grating-assisted null couplers," J. Lightwave Technol. 19(1), 92-104 (2001). https://doi.org/10.1109/50.914490
  6. J. P. Weber, "Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter," IEE Proc. Optoelectron. 140(5), 275-284(1993). https://doi.org/10.1049/ip-j.1993.0045
  7. R. R. A. Syms, "Improved coupled-mode theory for codirectionally and contra-directionally coupled waveguide arrays," J. Opt. Soc. Am. A 8(7), 1062-1069 (1991). https://doi.org/10.1364/JOSAA.8.001062
  8. C. Bulmer and M. Wilson, "Single mode grating coupling between thin-film and fiber optical waveguides," IEEE J. Quantum Electron. 14(10), 741-749(1978). https://doi.org/10.1109/JQE.1978.1069686
  9. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jeager, and L. Chrostowski, "Silicon photonic grating-assisted, contra-directional couplers," Opt. Express 21(3), 3633-3650(2013). https://doi.org/10.1364/OE.21.003633
  10. T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt. Commun. 157(1), 249-264 (1998). https://doi.org/10.1016/S0030-4018(98)00522-7
  11. H. Sakata, "Analysis of wavelength-selective photodetectors based on grating-assisted forward coupling," J. Lightwave Technol. 11(4), 560-566 (1993). https://doi.org/10.1109/50.248118
  12. E. Mao, D. R. Yankelevich, C. C. Lin, O. Solgaard, A. Knoesen, and J. S. Harris, "Narrow-band light emission in semiconductor-fibre asymmetric waveguide coupler," Electron. Lett. 36(16), 1378-1379 (2000). https://doi.org/10.1049/el:20001022
  13. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, "CMOS-compatible graphene photodetector covering all optical communication bands," Nat. Photon. 7(11), 892-896 (2013). https://doi.org/10.1038/nphoton.2013.240
  14. X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, "Chip-integrated ultrafast graphene photodetector with high responsivity," Nat. Photon. 7(11), 883-887 (2013). https://doi.org/10.1038/nphoton.2013.253
  15. S. Schuler, D. Schall, D. Neumaier, L. Dobusch, O. Bethge, B. Schwarz, M. Krall, and T. Mueller, "Controlled generation of ap-n junction in a waveguide integrated graphene photodetector," Nano Lett. 16(11), 7107-7112 (2016). https://doi.org/10.1021/acs.nanolett.6b03374
  16. R. J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. L. Koppens, J. Hone, and D. Englund, "High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit," Nano Lett. 15(11), 7288-7293 (2015). https://doi.org/10.1021/acs.nanolett.5b02368
  17. X. Yin, X. Ke, L. Chen, T. Zhang, J. Li, Z. Zhu, and X. Li, "Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer Graphene embedded silicon waveguides," J. Lightwave Technol. 34(13), 3181-3187 (2016). https://doi.org/10.1109/JLT.2016.2547896
  18. Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, "Electrically controlling the polarizing direction of a graphene polarizer," J. Appl. Phys. 116(10), 104304 (2014). https://doi.org/10.1063/1.4895588
  19. M. Kim, C. Y. Jung, H. Heo, and S. Kim, "Optical reflection modulation using surface plasmon resonance in a grapheneembedded hybrid plasmonic waveguide at optical communication wavelength," Opt. Lett. 40, 871-874 (2015). https://doi.org/10.1364/OL.40.000871
  20. T. Q. Tran, S. Lee, and S. Kim, "Tunable wide-angle tunneling in graphene-assistied frustrated total internal reflection," Sci. Rep. 6, 19975 (2016). https://doi.org/10.1038/srep19975
  21. A. Farmani, M. Miri, and M. H. Sheikhi, "Tunable resonant Goos-Hanchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces," J. Opt. Soc. Am. B 34(6), 1097-1106 (2017). https://doi.org/10.1364/JOSAB.34.001097
  22. M. Bruna and S. Borini, "Optical constants of graphene layers in the visible range," Appl. Phys. Lett. 94(3), 031901 (2009). https://doi.org/10.1063/1.3073717
  23. S. S. Orlov, A. Yariv, and S. V. Essen, "Coupled-mode analysis of fiber-optic add-drop filters for dense wavelengthdivision multiplexing," Opt. Lett. 22(10), 688-690 (1997). https://doi.org/10.1364/OL.22.000688
  24. S. Olivier, H. Benisty, C. Weisbuch, C. J. Smith, T. F. Krauss, and R. Houdre, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11(13), 1490-1496 (2003). https://doi.org/10.1364/OE.11.001490
  25. A. Farmani, M. Miri, and M. H. Sheikhi, "Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure," Opt. Commun. 391, 68-76(2017). https://doi.org/10.1016/j.optcom.2017.01.018
  26. G. W. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys. 103(6), 064302 (2008). https://doi.org/10.1063/1.2891452
  27. H. S. Chu and C. H. Gan, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett. 102, 231107 (2013). https://doi.org/10.1063/1.4810003
  28. C. Casiraghi, A. Hartschuh, E. lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, "Rayleigh imaging of graphene and graphene layers," Nano Lett. 7, 2711-2717 (2007). https://doi.org/10.1021/nl071168m