DOI QR코드

DOI QR Code

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard

지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능

  • Shin, Dong-Hyeon (Department of Architectural Engineering, University of Seoul) ;
  • Hong, Suk-Jae (Department of Architectural Engineering, University of Seoul) ;
  • Kim, Hyung-Joon (Department of Architectural Engineering, University of Seoul)
  • 신동현 (서울시립대학교 건축공학과) ;
  • 홍석재 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • Received : 2017.04.08
  • Accepted : 2017.08.11
  • Published : 2017.10.31

Abstract

The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

미국의 내진설계기준인 ASCE/SEI 7-10은 구조물 붕괴성능에 대한 불확실성을 고려하지 않는 등재해도 기반 내진설계의 문제점을 해결하기 위해 위험도 기반 내진설계 개념을 도입하였다. 하지만 현행 국내 내진설계기준의 경우 한반도 내에서 발생한 큰 규모의 지진기록과 구조물의 붕괴성능과 관련된 연구의 부족으로 위험도 기반 내진설계 개념을 반영하지 않고 있다. 본 연구에서는 철골 보통중심가새골조를 표본건물로 선정하여 위험도 기반 내진성능평가를 수행하였다. 건물이 위치한 지역, 높이, 지반조건을 변수로 바탕으로 표본건물에 대한 붕괴성능 평가를 수행하였으며, 국내 지진기록의 특성을 반영할 수 있는 경험적 스펙트럴 형상 예측 모델을 활용하여 지진재해도 곡선을 작성하였다. 이를 활용하여 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 위험도 적분 개념에 따라 평가하였다. 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 평가한 결과, 현행 건축구조기준에 따라 설계된 표본건물은 본 연구에서 고려한 해석 변수에 따라 붕괴확률에 상당한 차이를 보였다. 특히 국내 건축구조기준의 경우 철골 보통중심가새골조에 대한 높이제한이 없어 일부 고층표본건물에서 목표 위험도인 50년간 1%의 붕괴확률을 초과하는 것으로 평가되었다.

Keywords

References

  1. Architectural Institute of Korea (2016) Korean Building Code, KBC2016, Architectural Institute of Korea, Seoul.
  2. ASCE/SEI 7-05 (2005) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Virginia, U.S.A.
  3. ASCE/SEI 7-10 (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Virginia, U.S.A.
  4. Carr, A.J. (2009) RUAUMOKO-2D, Computer Program Library, Department of Civil Engineering, University of Canterbury, New Zealand.
  5. Cornell, C.A. (1968) Engineering Seismic Risk Analysis, Bull. Seismol. Soc. America, 58(5), pp.1583-1606.
  6. FEMA 356 (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C,, U.S.A.
  7. FEMA P-695 (2009) Quantification of Buildings Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., U.S.A.
  8. KAERI (2012) Probabilistic Seismic Hazard Analysis Procedure and Application for Nuclear Power Plant Sites, Report. No. KAERI/TR-4633, Korea Atomic Energy Research Institute, Daejeon, Korea.
  9. KIGMR (2012) Active Fault Map and Seismic Hazard Map, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea.
  10. Luco, N., Ellingwood, B.R., Hamburger, R.O., Hooper, J.D., Kimball, J.K., Kircher, C.A. (2007) Risk-Targeted Versus Current Seismic Design Maps for the Conterminous United States, Structural Engineers Association for California 2007 Convention Proceedings, pp.163-175.
  11. Matsuoka, M., Midorikawa, S. (1993) Empirical Estimation of Average Shear-wave Velocity of Ground using the Digiral National Land Information, J. Struct. & Constr., 443, pp.65-71.
  12. MLIT (1997) Study on Seismic Design Code Enhancing Seismic Performance, Ministry of Land, Infrastructure and Transportation in Korea, Seoul, Korea.
  13. NEMA (2013) Seismic Hazard Map of Korea, National Emergency Management Agency in Korea, Seoul, Korea.
  14. Park, J.Y. (2015) Evaluation of Seismic Collapse Capacity of Steel Ordinary Concentrically Braced Frames, Master thesis, University of Seoul, Seoul, Korea.
  15. Remennikov, A.M., Walpole, W.R. (1997) Modeling the Inelastic Cyclic Behaviour of A Bracing Member for Work Hardening Material, Int. J. Solids Struct., 34(27), pp.3491-3515. https://doi.org/10.1016/S0020-7683(96)00212-0
  16. Shin, D.H., Hong, S.J., Kim, H.J. (2016) Prediction of Spectral Acceleration Response Based on the Statistical Analyses of Earthquake Records in Korea, J. Earthq. Eng. Soc. Korea, 20(1), pp.45-54. https://doi.org/10.5000/EESK.2016.20.1.045
  17. Shin, D.H., Kim, H.J. (2015) Domestic Seismic Design Maps Based on Risk-Targeted Maximum-Considered Earthquakes, J. Earthq. Eng. Soc. Korea, 19(3), pp.93-102. https://doi.org/10.5000/EESK.2015.19.3.093
  18. Vamvasikos, D., Cornell, C.A. (2002) Incremental Dynamic Analysis, Earthq. Eng. & Struct. Dyn., 31, pp.491-514. https://doi.org/10.1002/eqe.141