DOI QR코드

DOI QR Code

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation

차원축소와 복원관계를 통한 복합재료 보의 열응력 해석

  • Jang, Jun Hwan (Aircarft Program Department, Defense Acquisition Program Administration) ;
  • Ahn, Sang Ho (Department of Automotive Engineering, Shinhan University)
  • 장준환 (방위사업청 항공기사업부) ;
  • 안상호 (신한대학교 자동차공학과)
  • Received : 2017.06.12
  • Accepted : 2017.10.16
  • Published : 2017.10.31

Abstract

Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.

섬유강화 복합재료는 열팽창 계수의 방향성을 갖고 있을 뿐만 아니라 제작과정 온도와 실제 사용온도 사이의 차이 때문에 필연적으로 열응력 효과를 받게 된다. 이러한 열응력에 의한 파손현상은 실제 항공우주산업에서의 응용이 증대되고 있는 두꺼운 복합 적층판의 경우에 더욱 현저한 현상으로 적층판의 역학적 기능 및 파단강도에 큰 영향을 미치게 된다. 본 연구에서는 복잡한 재질로 구성되고 높은 세장비를 가진 블레이드 날개 구조의 차원축소 및 열 응력 복원 이론을 소개하고 3차원 유한요소모델과 비교결과를 통해 효율성과 정확성을 입증한다. 또한 차원을 축소한 모델링을 구성하고 복원이론를 이용하여 열적 환경에 적용된 복합재 보 단면의 열응력을 차원 복원하고 시각적으로 형상화하는 효율적인 복원해석 과정을 소개하고자 한다.

Keywords

References

  1. Bauchau, O., Kang, N.K.A. (1993) Multibody Formulation for Helicopter Structural Dynamic Analysis, J. American Helicopter Soc., 38, pp.3-14. https://doi.org/10.4050/JAHS.38.3
  2. Borri, M., Mantegazza, P. (1985) Some Contributions on Structural and Dynamic Modeling of Helicopter Rotor Blades, L'Aerotecnica Missili e Spazio, l.64, pp.143-154.
  3. Borri, M.G., Ghiringhelli, L., Merlini, T. (1992) Linear Analysis of Naturally Curved and Twisted Anosotropic Beams, Compos. Eng., 2, pp.433-456. https://doi.org/10.1016/0961-9526(92)90036-6
  4. Giavotto, V. (1983) Anisotropic Beam Theory and Applications, Comput. & Struct., 16, pp.403-413. https://doi.org/10.1016/0045-7949(83)90179-7
  5. Hodges, D.H. (1990) A Review of Composite Rotor Blade Modeling, AIAA J., 28, pp.561-565. https://doi.org/10.2514/3.10430
  6. Jang, J.H., Koo, H.-M., Ahn, S.H. (2017) Computation of Energy Release Rates for Slender Beam through Recovery Analysis and Virtual Crack Closure Technique, J. Comput. Struct. Eng, 30, pp.31-37.
  7. Jeon, J., Muliana, A., La Saponara, V. (2014) Thermal Stress and Deformation Analyses in Fiber Reinforced Polymer Composites Undergoing Heat Conduction and Mechanical Loading, Compos. Struct., 111, pp.31-44. https://doi.org/10.1016/j.compstruct.2013.11.027
  8. Kosmatka, J.B., Friedmann, P.P. (1989) Vibration Analysis of Composite Turbo propellers Using a Nonllinear Beam-Type Finite-Element Approach, AIAA J., 27, pp.1606-1614. https://doi.org/10.2514/3.10308
  9. Kovvali, R.K., Hodges, D.H. (2011) Verication of the Variational Asymptotic Beam Section (VABS) Analysis for Initially Curved and Twisted Beams, 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA.
  10. Pietro, G., Hui, Y., Giunta, G., Belouettar, S., Carrera, E., Hu, H. (2016) Hierarchical One-Dimensional Finite Elements for the Thermal Stress Analysis of Three-Dimensional Functionally Graded Beams, Compos. Struct., 153, pp.514-2.8. https://doi.org/10.1016/j.compstruct.2016.06.012
  11. Vidal, P., Gallimard, L., Polit, O. (2016) Thermo-Mechanical Analysis of Laminated Composite and Sandwich Beams based on a Variables Separation, Compos. Struct., 152, pp.755-766. https://doi.org/10.1016/j.compstruct.2016.05.082
  12. Wang, Q. (2011) Asymptotic Multiphysics Modeling of Composite Beams, Ph.D Dissertation, Mechanical Engineering, Utah State University.
  13. Warminska, A., Manoach, E., Warminski, J. (2016) Vibrations of a Composite Beam Under Thermal and Mechanical Loadings, Proc. Eng., 144, pp.959-966. https://doi.org/10.1016/j.proeng.2016.05.123