DOI QR코드

DOI QR Code

개구리 증양식장 내·외부에서 채집된 북방산개구리(Rana dybowskii)로부터 검출된 세균과 곰팡이 콜로니 수의 비교 및 유생으로부터 확인된 세균 규명

Comparison of the Bacterial and Fungal Colonies from Rana dybowskii which Collected from Inside and Outside Frog Farms and Identification of the Bacteria from the Tadpoles

  • Kwon, Sera (Dept. of Biology, Kangwon National University) ;
  • Park, Daesik (Dept. of Biology, Kangwon National University) ;
  • Choi, Woo-Jin (Dept. of Biology, Kangwon National University) ;
  • Park, Jae-Jin (Dept. of Biology, Kangwon National University) ;
  • Cho, Han-Na (Dept. of Biology, Kangwon National University) ;
  • Han, Ji-Ho (Division of Science Education, Kangwon National University) ;
  • Lee, Jin-Gu (Gyeonggido Agricultural Research and Extension Services) ;
  • Koo, Kyo-Soung (Dept. of Biology, Kangwon National University)
  • 투고 : 2016.10.06
  • 심사 : 2017.09.22
  • 발행 : 2017.10.31

초록

세계 양서류 감소의 주요 요인으로 감염성 질병이 활발하게 연구되고 있으며, 야외 병원균 전파의 가능한 근원지로서 양서류 증양식장들이 언급되고 있으나, 국내에서 관련된 연구수행은 매우 미진한 상태이다. 본 연구에서는 인제, 괴산, 공주에 위치한 북방산개구리 증양식장의 내 외부에서 채집된 성체와 유생의 피부와 내부 장기들에서 확인되는 세균과 곰팡이 콜로니 수의 지역 간, 증양식장 내 외부 간 차이 여부를 파악하고, 나아가 유생으로부터 발견되는 세균의 종류를 16s rDNA 서열 비교를 통해 규명하고자 하였다. 연구결과, 성체의 경우 괴산에서 채집된 성체의 피부와 소화관으로부터 표집된 세균 콜로니 수와 피부와 간으로부터 표집된 곰팡이 콜로니 수가 인제에서 확인된 콜로니 수보다 의미 있게 많았으나 증양식장 내 외 간에는 두 지역 모두에서 어느 부위에서도 차이가 없었다. 유생의 경우 공주에서 채집된 유생의 내부로부터 표집된 곰팡이 콜로니 수가 인제에서 확인된 콜로니수보다 많은 경향을 보였다. 증양식장 내 외부의 비교 결과, 피부에서의 박테리아 수는 인제 증양식장 내부, 개체 내부에서의 박테리아 수는 공주 증양식장 외부에서 더 많은 콜로니 수가 확인되었다. 성체의 건강지수가 좋을수록 피부의 박테리아 콜로니 수와 피부와 심장의 곰팡이 콜로니 수가 적었으나, 유생에서는 관련성이 없었다. 유생으로부터 검출된 세균을 분류한 결과, 4개 문 내, 15개 속에 속하는 세균이 검출되었으나 증양식장 간 및 증양식장 내 외부 간 차이는 분명하지 않았다. 우리의 결과는 증양식장의 지역과 증양식장 내 외부 간의 서로 다른 조건들이 양서류에 있는 세균과 곰팡이의 군집크기 차이를 유발하며, 이것이 증양식 북방산개구리의 건강상태에 영향을 미칠 가능성이 있음을 보여준다. 더불어, 우리의 결과는 성공적인 양서류 증식장 운영과 증식장으로부터 질병의 가능한 야외전파를 막기 위하여, 증식장 내 효율적인 질병관리의 필요성이 높음을 시사한다.

There are many ongoing studies of infectious diseases as the major factor responsible for global declining of the amphibian population. Although some point out the amphibian rearing facilities like frog farms as one of the important sources of harboring and spreading amphibian infectious pathogens in the wild, there have been few related studies in South Korea. In this study, we investigated the bacterial and fungal colonies on the skin and in the internal organs of frogs and tadpoles collected inside and outside of Dybowski's brown frog farms in Inje, Goesan, and Gongju to compare the difference according to the region and between inside and outside the farm. We also intended to classify the bacteria collected from the tadpoles into species by analyzing 16s rDNA gene sequences. The result showed that the number of bacterial colonies found in the skin and gut of frogs and the number of fungal colonies found in the skin and liver of frogs collected in Goesan was significantly greater than those in the frogs in Inje. However, there was no difference between the frogs collected inside and outside of farms in both regions. In the case of tadpoles, the number of fungal colonies in the tadpoles collected from Gongju was greater than that in the tadpoles collected from Inje. The comparison of inside and outside frog farms showed that there were more bacterial colonies on the skin of the tadpoles collected from inside than outside the frog farm in Inje and more bacterial colonies in the organs of the tadpoles collected from outside than inside the farm in Gongju. The frogs with higher condition factor (body weight/snout-vent length*100) showed fewer bacterial colonies on the skin and fewer fungal colonies in the heart, but there were no significant relationships in tadpoles. We identified the total of 15 genera and four phyla of bacteria, but the difference according to regions and between inside and outside farm was not evident. The result of this study indicates that the different conditions according to the locality of farm and between inside and outside farm cause the difference in the population sizes of bacterial and fungal colonies and that it can affect the overall health condition of Dybowski's brown frogs in the farm. Moreover, the result suggests that effective disease control in the facility is greatly necessary to ensure successful operation of amphibian rearing facility and to prevent the possible spread of diseases from the facility to the wild.

키워드

참고문헌

  1. Antwis, R.E., R.L. Haworth, D.J.P. Engelmoer, V. Ogilvy, A.L. Fidgett and R.F. Preziosi (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 9(1): e85563. doi:10.1371/journal.pone.0085563.
  2. Barton, H.A., N.M. Taylor, B.R. Lubbers and A.C. Pemberton (2006) DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J. Microbiol. Methods 66(1): 21-31. https://doi.org/10.1016/j.mimet.2005.10.005
  3. Bataille, A., J.J. Fong, M. Cha, G.O.U. Wogan, H.J. Baek, H. Lee, M.S. Min and B. Waldman (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol. Ecol. 22(16): 4196-4209. https://doi.org/10.1111/mec.12385
  4. Becker, M.H., C.L. Richards-Zawacki, B. Gratwicke and L.K. Belden (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zetecki). Biol. Conser. 176: 199-206. https://doi.org/10.1016/j.biocon.2014.05.029
  5. Belden, L.K., M.C. Hughey, E.A. Rebollar, T.P. Umile, S.C. Loftus, E.A. Burzynski, K.P.C. Minbiole, L.L. House, R.V. Jensen, M.H. Becker, J.B. Walke, D. Medina, R. Ibanez and R.N. Harris (2015) Panamanian frog species host unique skin bacterial communities. Front. Microbiol. 6:1171. doi:10.3389/fmicb.2015.0117.
  6. Carey, C. and M.A. Alexander (2003) Climate change and amphibian declines: is there a link? Divers. Distrib. 9(2): 111-121. https://doi.org/10.1046/j.1472-4642.2003.00011.x
  7. Culp, C.E., J.O. Falkinham III and L.K. Belden (2007) Identification of the natural bacterial micorflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders. Herpetologica 63(1): 66-71. https://doi.org/10.1655/0018-0831(2007)63[66:IOTNBM]2.0.CO;2
  8. Daszak, P., A.A. Cunningham and A.D. Hyatt (2003) Infectious disease and amphibian population declines. Divers. Distrib. 9(2): 141-150. https://doi.org/10.1046/j.1472-4642.2003.00016.x
  9. Densmore, C.L. and D.E. Green (2007) Diseases of amphibians. ILAR J. 48(3): 235-254. https://doi.org/10.1093/ilar.48.3.235
  10. Duellman, W.E. and L. Trueb (1994) Biology of Amphibians. The Johns Hopkins University Press, Baltimore and London, MD, USA.
  11. Duffus, A.L.J. (2009) Chytrid blinders: what other disease risks to amphibians are we missing? EcoHelath 6(3): 335-339. https://doi.org/10.1007/s10393-009-0271-8
  12. Federici, E., R. Rossi, L. Fidati, R. Paracucchi, S. Scargetta, E. Montalbani, A. Franzetti, G. La Porta, A. Fagotti, F. Simoncelli, G. Cenci and I. Di Rosa (2015) Characterization of the skin microbiota in Italian stream frogs (Rana italica) infected and uninfected by a cutaneous parasitic disease. Microbes Environ. 30(3): 262-269. https://doi.org/10.1264/jsme2.ME15041
  13. Fey, S.B., A.M. Siepielski, S. Nussle, K. Cervantes-Yoshida, J.L. Hwan, E.R. Huber, M.J. Fey, A. Catenazzi and S.M. Carlson (2015) Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. PNAS 112(4): 1083-1088. https://doi.org/10.1073/pnas.1414894112
  14. Fisher, M.C., T.W. Garner and S.F. Walker (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rew. Microbiol. 63: 291-310. https://doi.org/10.1146/annurev.micro.091208.073435
  15. Gentz, E.J. (2007) Medicine and surgery of amphibians. ILAR J. 48(3): 255-259. https://doi.org/10.1093/ilar.48.3.255
  16. Grawshaw, G.J. (1992) Amphibian medicine. In: R.W. Kirk, J.D. Bonagura, C.A. Osborne (eds.), Current Veterinary Therapy. XI. Small Animal Practice. W.B. Saunders Company, Philadelphia, PA, USA. pp. 1219-1230.
  17. Green, D.E., K.A. Converse and A.K. Schrader (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann. N.Y. Acad. Sci. 969(1): 323-339. https://doi.org/10.1111/j.1749-6632.2002.tb04400.x
  18. Holden, W.M., S.M. Hanlon, D.C. Woodhams, T.M. Chappell, H.L. Wells, S.M. Glisson, V.J. McKenzie, R. Knight, M.J. Parris and L.A. Rollins-Smith (2015) Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana sphenocephala) against the frog-killing fungus, Batrachochytrium dendrobatidis. Biol. Conserv. 187: 91-102. https://doi.org/10.1016/j.biocon.2015.04.007
  19. Jeong, Y.J., J.T. Kim and G.H. Suh (2014) Case report: mass death of frogs (Rana dybowskii) caused by septicemia in artificial raising farm. Korean J. Vet. Serv. 37(3): 203-212. https://doi.org/10.7853/kjvs.2014.37.3.203
  20. Kim, J.S., K.S. Koo, J.J. Park, S. Kwon, W.J. Choi, H.N. Cho and D. Park (2016) The first report on the Acanthocephalan infection of the Dybowskii's brown frogs (Rana dybowskii) collected inside and outside the commercial frog farms in Korea. Korean J. Environ. Ecol. 30(4): 694-704. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2016.30.4.694
  21. Kim, S., A.H. Eom, D. Park and N.Y. Ra (2008) Detection of infectious fungal diseases of frogs inhabiting in Korea. Mycobiology 36(1): 10-12. https://doi.org/10.4489/MYCO.2008.36.1.010
  22. Kim, S., M.Y. Sim, A.H. Eom, D. Park and N.Y. Ra (2009) PCR detection of ranavirus in gold-spotted pond frogs (Rana plancyi chosenica) from Korea. Korean J. Environ. Biol. 27: 110-113.
  23. Lane, D.J. (1991) 16S/23S rRNA sequencing. In: E. Stackebrandt, M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematic. John Wiley and Sons, New York, NY, USA. pp. 125-175.
  24. Laurence, M., C. Hatzis and D.E. Brash (2014) Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS ONE 9(5): e97876. doi:10.1371/journal.pone.0097876.
  25. Longo, A.V., A.E. Savage, I. Hewson and K.R. Zamudio (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease daynamics in declining amphibians. R. Soc. Open Sci. 2(7): 140377. https://doi.org/10.1098/rsos.140377
  26. Mazzoni, R., A.J. de Mesquita, L.F.F. Fleury, W.M.E.D. de Brito, I.A. Nunes, J. Robert, H. Morales, A.S.G. Coelho, D.L. Barthasson, L. Galli and M.H.B. Catroxo (2009) Mass mortality associated with a frog virus 3-like Ranavirus infection in farmed tadpoles Rana catesbeiana from Brazil. Dis. Aquat. Organ. 86(3): 181-191. https://doi.org/10.3354/dao02096
  27. Mauel, M.J., D.L. Miller, K.S. Frazier and M.E. Hines II (2002) Bacterial pathogens isolated from cultured bullfrogs (Rana castesbeiana). J. Vet. Diagn. Invest. 14: 431-433. https://doi.org/10.1177/104063870201400515
  28. McKenzie, V.J., R.M. Bowers, N. Fierer, R. Knight and C.L. Lauber (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6(3): 588-596. https://doi.org/10.1038/ismej.2011.129
  29. Park, G.M. (2012) Pathogenic parasites of Korean wild reptiles and amphibians: a study of implications for pathogen transmission in a changing climate. Korean J. Nat. Conserv. 6(2): 94-101. (in Korean with English abstract) https://doi.org/10.11624/KJNC.2012.6.2.94
  30. Park, I.K., K.S. Koo, K.Y. Moon, J.G. Lee, D. Park (2017) PCR detection of ranavirus from dead Kaloula borealis and sick Hyla japonica tadpoles in the wild. Korean J. Herpetol. 8: 10-14.
  31. Pessier, A.P. (2002) An overview of amphibian skin disease. Semin. Avian Exot. Pet. 11(3): 162-174. https://doi.org/10.1053/saep.2002.123980
  32. Salter, S.J., M.J. Cox, E.M. Turek, S.T. Calus, W.O. Cookson, M.F. Moffatt, P. Turner, J. Parkhill, N.J. Loman and A.W. Walker (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12:87. doi:10.1186/s12915-014-0087-z.