DOI QR코드

DOI QR Code

Stretchable Deformation-Resistance Characteristics of Metal Thin Films for Stretchable Interconnect Applications II. Characteristics Comparison for Au, Pt, and Cu Thin Films

신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 II. Au, Pt 및 Cu 박막의 특성 비교

  • Park, Donghyun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 박동현 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2017.09.12
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Stretchable deformation-resistance characteristics of Au, Pt, and Cu films were measured for the stretchable packaging structure where a parylene F was used as an intermediate layer between a PDMS substrate and a metal thin film. The 150 nm-thick Au and Pt films, sputtered on the parylene F-coated PDMS substrate, exhibited the initial resistances of $1.56{\Omega}$ and $5.53{\Omega}$, respectively. The resistance increase ratios at 30% tensile strain were measured as 7 and 18 for Au film and Pt film, respectively. The 150 nm-thick Cu film, sputtered on the parylene F-coated PDMS substrate, exhibited a very poor stretchability compared to Au and Pt films. Its resistance was initially $18.71{\Omega}$, rapidly increased with applying tensile deformation, and finally became open at 5% tensile strain.

Polydimethylsiloxane (PDMS) 기판과 금속박막 사이의 중간층으로 parylene F를 사용한 신축패키지 구조에서 Au, Pt, Cu 박막의 신축변형에 따른 저항변화를 분석하였다. Parylene F 중간층을 코팅한 PDMS 기판에 스퍼터링한 150 nm 두께의 Au 박막과 Pt 박막은 각기 $1.56{\Omega}$$5.53{\Omega}$의 초기저항을 나타내었으며, 30% 인장변형률에서 각 박막의 저항증가비 ${\Delta}R/R_o$은 각기 7 및 18로 측정되었다. Cu 박막은 $18.71{\Omega}$의 높은 초기저항을 나타내었으며 인장변형에 따라 저항이 급격히 증가하다 5% 인장변형률에서 open 되어, Au 박막과 Pt 박막에 비해 매우 열등한 신축 특성을 나타내었다.

Keywords

References

  1. J. Y. Choi and T.S. Oh, "Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles", J. Electron. Mater., 43, 4464 (2014). https://doi.org/10.1007/s11664-014-3431-8
  2. D. Park and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017). https://doi.org/10.2320/matertrans.M2017065
  3. D. Park, K. S. Han and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017). https://doi.org/10.2320/matertrans.M2017066
  4. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  5. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  6. S. Yao and Y. Zhu, "Nanomaterial-enabled Stretchable Conductors: Strategies, Materials and Devices", Adv. Mater., 27, 1480 (2015). https://doi.org/10.1002/adma.201404446
  7. Y. Wang, Z. Li and J. Xiao, "Stretchable Thin Film Materials: Fabrication, Application, and Mechanics", J. Electron. Packag., 138, 020801 (2016). https://doi.org/10.1115/1.4032984
  8. S. Wagner, S. P. Lacour, J. Jones, I. H. Pai-hui, J. C. Sturm, T. Li and Z. Suo, "Electronic Skin: Architecture and Components", Physica E: Low-dimensional Systems and Nanostructures, 25(2), 326 (2004). https://doi.org/10.1016/j.physe.2004.06.032
  9. J. Y. Choi and T. S. Oh, "Contact Resistance Comparison of Flip-Chip Joints Produced with Anisotropic Conductive Adhesive and Nonconductive Adhesive for Smart Textile Applications", Mater. Trans., 56, 1711 (2015). https://doi.org/10.2320/matertrans.M2015106
  10. E. O. Thorp, "The Invention of the First Wearable Computer", Digest of Papers, Second International Symposium on Wearable Computers, IEEE, 4 (1998).
  11. D. Park, S. J. Shin and T. S. Oh, "Stretchable Characteristics of Thin Au Films on Polydimethylsiloxane Substrates with the Parylene Intermediate Layer for Stretchable Electronic Packaging", J. Electron. Mater., 1 (2017)
  12. Y. Y. Hsu, C. Papakyrikos, D. Liu, X. Wang, M. Raj, B. Zhang and R. Ghaffari, "Design for Reliability of Multi-layer Stretchable Interconnects", J. Micromech. Microeng., 24(9), 095014 (2014). https://doi.org/10.1088/0960-1317/24/9/095014
  13. Y. Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren and I.D. Wolf, "Polyimide-enhanced Stretchable Interconnects: Design, Fabrication, and Characterization", Thin Solid Films, 519, 2225 (2011). https://doi.org/10.1016/j.tsf.2010.10.069
  14. J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  15. H. A. Oh, D. Park, K. S. Han and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 91 (2015). https://doi.org/10.6117/kmeps.2015.22.4.091
  16. H. A. Oh, D. Park, S. J. Shin and T.S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015). https://doi.org/10.6117/kmeps.2015.22.4.117
  17. A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26, 3372 (2010). https://doi.org/10.1021/la903154y
  18. I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014). https://doi.org/10.1088/0960-1317/24/3/035017
  19. Y. Qian, X. Zhang, L. Xie, D. Qi, B. K. Chandran, X. Chen and W. Huang, "Stretchable Organic Semiconductor Devices", Adv. Mater., 28, 9243 (2016). https://doi.org/10.1002/adma.201601278
  20. D. H. Kim, J. Xiao, J. Song, Y. Huang and J. A. Rogers, "Stretchable, Curvilinear Electronics Based on Inorganic Materials", Adv. Mater., 22, 2108 (2010). https://doi.org/10.1002/adma.200902927
  21. G. Shin, C. H. Yoon, M. Y. Bae, Y. C. Kim, S. K. Hong, J. A. Rogers and J. S. Ha, "Stretchable Field-effect-transistor Array of Suspended $SnO_2$ Nanowires", Small, 7(9), 1181 (2011). https://doi.org/10.1002/smll.201100116
  22. S. P. Lacour, J. Jones, S. Wagner, T. Li and Z. Suo "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE 93(8), 1459 (2005). https://doi.org/10.1109/JPROC.2005.851502
  23. J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y. Y. Hsu, T. Vervust, I. D. Wolf and M. Jablonski, "Printed Circuit Board Technology Inspired Stretchable Circuits", MRS Bull., 37(03), 254 (2012). https://doi.org/10.1557/mrs.2012.48
  24. Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Huppert, B. Morey and R. Ghaffari, "Archipelago Platform for Skin-mounted Wearable and Stretchable Electronics", Proc. 64th Electron. Comp. Technol. Conf., (Institute of Electrical and Electronics Engineers), 145 (2014).
  25. A. P. Robinson, I. Minev, I. M. Graz and S. P. Lacour, "Microstructured Silicone Substrate for Printable and Stretchable Metallic Films", Langmuir, 27, 4279 (2011). https://doi.org/10.1021/la103213n
  26. O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope and W.O. Soboyejo, "Large Strain Deformation and Cracking of Nano-scale Gold Films on PDMS Substrate", Mater. Sci. Eng. B., 170, 32 (2010). https://doi.org/10.1016/j.mseb.2010.02.023
  27. I. M. Graz, D. P. J. Cotton and S. P. Lacour, "Extended Cyclic Uniaxial Loading of Stretchable Gold Thin-films on Elastomeric Substrates", Appl. Phys. Lett., 94, 071902 (2009). https://doi.org/10.1063/1.3076103
  28. F. Xu and Y. Zhu, "Highly Conductive and Stretchable Silver Nanowire Conductors", Adv. Mater., 24, 5117 (2012). https://doi.org/10.1002/adma.201201886
  29. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  30. K. Y. Chun, Y. Oh, J. Rho, J. H. Ahn, Y. J. Kim, H. R. Choi and S. Baik, "Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver", Nature Nanotechnol, 5, 853 (2010). https://doi.org/10.1038/nnano.2010.232
  31. "Gold - Properties and Applications of Gold", https://www.azom.com/properties.aspx?ArticleID=598
  32. "Gold", https://en.wikipedia.org/wiki/Gold
  33. "Properties: Platinum - Applications - AZoM", https://www.azom.com/properties.aspx?ArticleID=1344
  34. "Platinum", https://en.wikipedia.org/wiki/Platinum
  35. "Properties: Copper - AZoM", https://www.azom.com/properties.aspx?ArticleID=597
  36. "Copper", https://en.wikipedia.org/wiki/Copper
  37. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska and V. Svorcik, "Properties of Gold Nanostructures Sputtered on Glass", Nanoscale Res. Lett., 6, 96 (2011). https://doi.org/10.1186/1556-276X-6-96
  38. C. Markert, D. Lutzenkirchen-Hecht and R. Frahm, "Structural and Electrical Properties of Thin D. C. Magnetron-sputtered Gold Films Deposited on Float Glass", Surf. Interface Anal., 38, 715 (2006). https://doi.org/10.1002/sia.2258
  39. K. Mech, R. Kowalik and P. Zabinski, "Cu Thin Films Deposited by DC Magnetron Sputtering for Contact Surfaces on Electronic Components", Arch. Metall. Mater., 56, 903 (2011).
  40. M. T. Le, Y. U. Sohn, J. W. Lim and G. S. Choi, "Effect of Sputtering Power on the Nucleation and Growth of Cu Films Deposited by Magnetron Sputtering", Mater. Trans., 51(1), 116 (2010). https://doi.org/10.2320/matertrans.M2009183
  41. N. Chou, J. Jeong and S. Kim, "Crack-free and Reliable Lithographical Patterning Methods on PDMS Substrate", J. Micromech. Microeng., 23, 125035 (2013). https://doi.org/10.1088/0960-1317/23/12/125035
  42. N. Chou, S. Yoo and S. Kim, "A Largely Deformable Surface Type Neural Electrode Array Based on PDMS", IEEE Trans. Neural Syst. Rehabil. Eng., 21, 544 (2013). https://doi.org/10.1109/TNSRE.2012.2210560

Cited by

  1. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.047