유기 및 페로브스카이트 태양전지 전하 전달 층으로서의 이차원 물질 활용

  • 허도연 (중앙대학교 화학신소재공학부) ;
  • 쿠엣반 (중앙대학교 화학신소재공학부) ;
  • 김수영 (중앙대학교 화학신소재공학부)
  • Published : 2017.09.30

Abstract

Keywords

References

  1. T. Saga, "Advances in crystalline silicon solar cell technology for industrial mass production," NPG Asia Mater., 2 [3] 96-102 (2010). https://doi.org/10.1038/asiamat.2010.82
  2. M. C. Scharber, N. S. Sariciftci, "Efficiency of bulk-heterojunction organic solar cells," Prog. Polym. Sci., 38 [12] 1929-40 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.001
  3. G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, "Colloidal quantum dot solar cells," Chem. Rev., 115 [23] 12732-63 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
  4. H. J. Snaith, "Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells," J. Phys. Chem. Lett., 4 [21] 3623-30 (2013). https://doi.org/10.1021/jz4020162
  5. J. Gong, J. Liang, K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renew. Sustain. Energy Rev., 16 [8] 5848-60 (2012). https://doi.org/10.1016/j.rser.2012.04.044
  6. M. A. Green, A. Ho-Baillie, H. J. Snaith, "The emergence of perovskite solar cells," Nature Photon., 8 506-14 (2014). https://doi.org/10.1038/nphoton.2014.134
  7. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, "A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies," J. Mater. Chem., 19 5442-51 (2009). https://doi.org/10.1039/b823001c
  8. J. Alstrup, M. Jorgensen, A. J. Medford, F. C. Krebs, "Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating," ACS Appl. Mater. Interfaces, 2 [10] 2819-27 (2010). https://doi.org/10.1021/am100505e
  9. M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, "A molecularly engineered hole-transporting material for efficient perovskite solar cells," Nat. Energy., 1 15017 (2016). https://doi.org/10.1038/nenergy.2015.17
  10. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science, 350 [6263] 944-8 (2015). https://doi.org/10.1126/science.aad1015
  11. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun., 4 1446 (2013). https://doi.org/10.1038/ncomms2411
  12. R. Po, C. Carbonera, A. Bernardi, N. Camaioni, "The role of buffer layers in polymer solar cells," Energy Environ. Sci., 4 285-310 (2011). https://doi.org/10.1039/C0EE00273A
  13. J.-H. Choi, H.-J. Choi, J.-H. Shin, H.-P. Kim, J. Jang, H. Lee, "Enhancement of organic solar cell efficiency by patterning the PEDOT:PSS hole transport layer using nanoimprint lithography," Org. Electron., 14 [12] 3180-5 (2013). https://doi.org/10.1016/j.orgel.2013.09.020
  14. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, "Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer," Adv. Mater., 23 [19] 2226-30 (2011). https://doi.org/10.1002/adma.201100038
  15. H. Pan, L. Zuo, W. Fu, C. Fan, B. Andreasen, X. Jiang, K. Norrman, F. C. Krebs, H. Chen, "MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells," Org. Electron., 14 [3] 797-803 (2013). https://doi.org/10.1016/j.orgel.2012.12.020
  16. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K.-Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer," Appl. Phys. Lett., 92 [25] 253301 (2008). https://doi.org/10.1063/1.2945281
  17. C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, "Low work function metal modified ito as cathode for inverted polymer solar cells," Sol. Energy Mater. Sol. Cells, 94 [10] 1618-21 (2010). https://doi.org/10.1016/j.solmat.2010.04.082
  18. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, "Degradation of organic solar cells due to air exposure," Sol. Energy Mater. Sol. Cells, 90 [20] 3520-30 (2006). https://doi.org/10.1016/j.solmat.2006.06.041
  19. M. Jorgensen, K. Norrman, F. C. Krebs, "Stability/degradation of polymer solar cells," Sol. Energy Mater. Sol. Cells, 92 [7] 686-714 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
  20. M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, "Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) in polymer light-emitting diodes," Appl. Phys. Lett., 77 2255-7 (2000). https://doi.org/10.1063/1.1315344
  21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, 306 [5696] 666-9 (2004). https://doi.org/10.1126/science.1102896
  22. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photon., 4 611-22 (2010). https://doi.org/10.1038/nphoton.2010.186
  23. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, "Ultrasensitive photodetectors based on monolayer $MoS_2$," Nat. Nanotech., 8 497-501 (2013). https://doi.org/10.1038/nnano.2013.100
  24. J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M. A. Alam, S. Kim, "Two-dimensional layered $MoS_2$ biosensors enable highly sensitive detection of biomolecules," Sci. Rep., 4 7352 (2014).
  25. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotech., 7 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
  26. K. C. Kwon, K. S. Choi, S. Y. Kim, "Increased work function in few-layer graphene sheets via metal chloride doping," Adv. Funct. Mater., 22 [22] 4724-31 (2012). https://doi.org/10.1002/adfm.201200997
  27. D. Yang, L. Zhou, W. Yu, J. Zhang, C. Li, "Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells," Adv. Energy Mater., 4 [15] 1400591 (2014). https://doi.org/10.1002/aenm.201400591
  28. J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na, H.-G. Jeong, J. Kim, S. Lee, S.-S. Kim, H. Y. Koo, T.-W. Kim, D.-Y. Kim, "Efficient work-function engineering of solution-processed $MoS_2$ thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells," J. Mater. Chem. C, 1 3777 (2013). https://doi.org/10.1039/c3tc30504j
  29. E. O. Ortiz-Quiles, C. R. Cabrera, "Exfoliated molybdenum disulfide for dye sensitized solar cells," FlatChem, 2 1-7 (2017). https://doi.org/10.1016/j.flatc.2017.01.002
  30. S. Lin, Y. Chui, Y. Li, S. P. Lau, "Liquid-phase exfoliation of black phosphorus and its applications," FlatChem, 2 15-37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
  31. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, "Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells," ACS Nano, 4 [6] 3169-74 (2010). https://doi.org/10.1021/nn100551j
  32. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, "Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films," Adv. Funct. Mater., 19 [16] 2577-83 (2009). https://doi.org/10.1002/adfm.200900166
  33. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, "Insulator to semimetal transition in graphene oxide," J. Phys. Chem. C, 113 [35] 15768-71 (2009). https://doi.org/10.1021/jp9051402
  34. J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, "Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells," Adv. Mater., 23 [42] 4923-8 (2011). https://doi.org/10.1002/adma.201102207
  35. X. Liu, H. Kim, L. J. Guo, "Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells," Org. Electron., 14 [12] 591-8 (2013). https://doi.org/10.1016/j.orgel.2012.11.020
  36. E.-S. Choi, Y.-J. Jeon, S.-S. Kim, T.-W. Kim, Y.-J. Noh, S.-N. Kwon, S.-I. Na, "Metal chloride-treated graphene oxide to produce high-performance polymer solar cells," Appl. Phys. Lett., 107 [2] 023301 (2015). https://doi.org/10.1063/1.4926799
  37. J. Kim, V. C. Tung, J. Huang, "Water processable graphene oxide:Single walled carbon nanotube composite as anode modifier for polymer solar cells," Adv. Energy Mater., 1 [6] 1052-7 (2011). https://doi.org/10.1002/aenm.201100466
  38. C. Y. Lee, Q. V. Le, C. Kim, S. Y. Kim, "Use of silane-functionalized graphene oxide in organic photovoltaic cells and organic light-emitting diodes, Phys. Chem. Chem. Phys., 17 9369-74 (2015). https://doi.org/10.1039/C5CP00507H
  39. L. Chen, D. Du, K. Sun, J. Hou, J. Ouyang, "Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: Graphene oxide nanocomposites as hole-collection material," ACS Appl. Mater. Interfaces, 6 [24] 22334-42 (2014). https://doi.org/10.1021/am506326y
  40. D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, A. J. Heeger, "Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells," Angew. Chem. Int. Ed., 52 [10] 2874-80 (2013). https://doi.org/10.1002/anie.201209999
  41. J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, "Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells," Adv. Mater., 24 [17] 2228-33 (2012). https://doi.org/10.1002/adma.201104945
  42. S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu, D. Gupta, "Incorporation of silver and gold nanostructures for performance improvement in P3HT:PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer," Org. Electron., 29 79-87 (2016). https://doi.org/10.1016/j.orgel.2015.11.015
  43. I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, M. C. Hersam, "Graphene oxide interlayers for robust, high-efficiency organic photovoltaics," J. Phys. Chem. Lett., 2 [24] 3006-12 (2011). https://doi.org/10.1021/jz201493d
  44. Y. Gao, H.-L. Yip, S. K. Hau, K. M. O'Malley, N. C. Cho, H. Chen, A. K.-Y. Jen, "Anode modification of inverted polymer solar cells using graphene oxide," Appl. Phys. Lett., 97 [20] 203306 (2010). https://doi.org/10.1063/1.3507388
  45. R. Wu, Y. Wang, L. Chen, L. Huang, Y. Chen, "Control of the oxidation level of graphene oxide for high efficiency polymer solar cells," RSC Adv., 5 [61] 49182-7 (2015). https://doi.org/10.1039/C5RA02099A
  46. J. Liu, Y. Xue, L. Dai, "Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells," J. Phys. Chem. Lett., 3 [14] 1928-33 (2012). https://doi.org/10.1021/jz300723h
  47. C. Li, X. Yang, Y. Zhao, P. Zhang, Y. Tu, Y. Li, "Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells," Org. Electron., 15 [11] 2868-75 (2014). https://doi.org/10.1016/j.orgel.2014.08.007
  48. J. C. Yu, J. I. Jang, B. R. Lee, G.-W. Lee, J. T. Han, M. H. Song, "Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer," ACS Appl. Mater. Interfaces, 6 [3] 2067-73 (2014). https://doi.org/10.1021/am4051487
  49. Y.-H. Chao, J.-S. Wu, C.-E. Wu, J.-F. Jheng, C.-L. Wang, C.-S. Hsu, "Solution-processed (graphene oxide)-(transition metal oxide) composite anodic buffer layers toward high-performance and durable inverted polymer solar cells," Adv. Energy Mater., 3 [10] 1279-85 (2013). https://doi.org/10.1002/aenm.201300430
  50. Y.-Y. Yu, B. H. Kang, Y. D. Lee, S. B. Lee, B.-K. Ju, "Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells," Appl. Surf. Sci., 287 91-6 (2013). https://doi.org/10.1016/j.apsusc.2013.09.078
  51. H. P. Kim, A. R. b. Mohd Yusoff, J. Jang, "Organic solar cells using a reduced graphene oxide anode buffer layer," Sol. Energy Mater. Sol. Cells, 110 87-93 (2013). https://doi.org/10.1016/j.solmat.2012.12.001
  52. S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S. M. Jo, H.-I. Joh, S.-I. Na, "Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells," Nanoscale, 6 7183-7 (2014). https://doi.org/10.1039/C4NR01038H
  53. T.-W. Kang, Y.-J. Noh, S.-S. Kim, H.-I. Joh, S.-I. Na, "Efficient inverted-structure polymer solar cells with reduced graphene oxide for anode modification," J. Ind. Eng. Chem., 24 206-10 (2015). https://doi.org/10.1016/j.jiec.2014.09.030
  54. Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process," Appl. Surf. Sci., 296 140-6 (2014). https://doi.org/10.1016/j.apsusc.2014.01.061
  55. N. T. Ho, V. Senthilkumar, H.-S. Cho, S. H. Nho, S. Cho, M. C. Jung, Y. B. Qi, Y. S. Kim, "Reliability improvement of bulk-heterojunction organic solar cell by using reduced graphene oxide as hole-transport layer," Phys. Status Solidi A-Appl. Mat., 211 [8] 1873-6 (2014). https://doi.org/10.1002/pssa.201330611
  56. Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer," Sol. Energy Mater. Sol. Cells, 105 96-102 (2012). https://doi.org/10.1016/j.solmat.2012.05.024
  57. G. Kakavelakis, D. Konios, E. Stratakis, E. Kymakis, "Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer," Chem. Mater., 26 [20] 5988-93 (2014). https://doi.org/10.1021/cm502826f
  58. S. Qu, M. Li, L. Xie, X. Huang, J. Yang, N. Wang, S. Yang, "Noncovalent functionalization of graphene attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and application as electron extraction layer of polymer solar cells," ACS Nano, 7 [5] 4070-81 (2013). https://doi.org/10.1021/nn4001963
  59. D. Konios, G. Kakavelakis, C. Petridis, K. Savva, E. Stratakis, E. Kymakis, "Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers," J. Mater. Chem. A, 4 1612-23 (2016). https://doi.org/10.1039/C5TA09712F
  60. C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, L.-J. Li, "Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells," ACS Nano, 6 [6] 5031-9 (2012). https://doi.org/10.1021/nn301721q
  61. Y. Shi, H. Li, L.-J. Li, "Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques," Chem. Soc. Rev., 44 2744-56 (2015). https://doi.org/10.1039/C4CS00256C
  62. H. Zhang, "Ultrathin two-dimensional nanomaterials," ACS Nano, 9 [10] 9451-69 (2015). https://doi.org/10.1021/acsnano.5b05040
  63. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, "Enhanced catalytic activity in strained chemically exfoliated WS2nanosheetsforhydrogenevoluti on," Nat. Mater., 12 850-5 (2013). https://doi.org/10.1038/nmat3700
  64. Z. Liu, S. P. Lau, F. Yan, "Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing," Chem. Soc. Rev., 44 5638-79 (2015). https://doi.org/10.1039/C4CS00455H
  65. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, A. Salehi-Khojin, "Robust carbon dioxide reduction on molybdenum disulphide edges," Nat. Commun., 5 4470 (2014). https://doi.org/10.1038/ncomms5470
  66. M. Marcia, A. Hirsch, F. Hauke, "Perylene-based non-covalent functionalization of 2D materials," FlatChem, 1 89-103 (2017). https://doi.org/10.1016/j.flatc.2017.01.001
  67. X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.-T. Lee, H. Zhang, B. Sun, "A solution-processed hole extraction layer made from ultrathin MoS2nanosheetsforefficientor ganicsolarcells," Adv. Energy Mater., 3 [10] 1262-8 (2013). https://doi.org/10.1002/aenm201300549
  68. Q. V. Le, T. P. Nguyen, H. W. Jang, S. Y. Kim, "The use of UV/Ozone-treated $MoS_2$ nano sheets for extended airs tability in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 13123-8 (2014). https://doi.org/10.1039/C4CP01598C
  69. J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, D. Y. Kim, "Exfoliated and partially oxidized $MoS_2$ nanosheets by one-pot reaction for efficient and stable organic solar cells", Small, 10 [12] 2319-24 (2014). https://doi.org/10.1002/smll.201303648
  70. W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, "Ultra-stable two-dimensional $MoS_2$ solution for highly efficient organic solar cells," RSC Adv., 4 32744-8 (2014). https://doi.org/10.1039/C4RA04116J
  71. X. Yang, W. Fu, W. Liu, J. Hong, Y. Cai, C. Jin, M. Xu, H. Wang, D. Yang, H. Chen, "Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells," J. Mater. Chem. A, 2 7727-33 (2014). https://doi.org/10.1039/C4TA01336K
  72. K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J.-M. Jeon, J. Y. Ham, J.-L. Lee, H. W. Jang, S. Y. Kim, "Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices," ACS Nano, 9 [4] 4146-55 (2015). https://doi.org/10.1021/acsnano.5b01504
  73. Q. Van Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, S. Y. Kim, "Bottom-up synthesis of MeSx nanodots for optoelectronic device applications," Adv. Opt. Mater., 4 [11] 1796-804 (2016). https://doi.org/10.1002/adom.201600333
  74. W. Xing, Y. Chen, X. Wang, L. Lv, X. Ouyang, Z. Ge, H. Huang, "MoS2 quantum dots with a tunable work function for high-performance organic solarcells," ACS Appl. Mater. Interfaces, 8 [40] 26916-23 (2016). https://doi.org/10.1021/acsami.6b06081
  75. Q. V. Le, T. P. Nguyen, S. Y. Kim, "UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells," Phys. Status Solidi RRL, 8 [5] 390-4 (2014). https://doi.org/10.1002/pssr.201409165
  76. Q. V. Le, T. P. Nguyen, K. S. Choi, Y.-H. Cho, Y. J. Hong, S. Y. Kim, "Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 25468-72 (2014). https://doi.org/10.1039/C4CP04412F
  77. X. Gu, W. Cui, T. Song, C. Liu, X. Shi, S. Wang, B. Sun, "Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells," ChemSusChem, 7 [2] 416-20 (2014). https://doi.org/10.1002/cssc.201300615
  78. Z. Yuan, Z. Wu, S. Bai, W. Cui, J. Liu, T. Song, B. Sun, "Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics," Org. Electron., 26 327-33 (2015). https://doi.org/10.1016/j.orgel.2015.07.005
  79. S. Lin, S. Liu, Z. Yang, Y. Li, T. W. Ng, Z. Xu, Q. Bao, J. Hao, C.-S. Lee, C. Surya, F. Yan, S. P. Lau, "Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics," Adv. Funct. Mater., 26 [6] 864-71 (2016). https://doi.org/10.1002/adfm.201503273
  80. Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, "Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor," Nanoscale, 6 10505-10 (2014). https://doi.org/10.1039/C4NR03181D
  81. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, S.-I. Na, "Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer," Nano Energy, 12 96-104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
  82. A. L. Palma, L. Cina, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, "Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells," Nano Energy, 22 349-60 (2016). https://doi.org/10.1016/j.nanoen.2016.02.027
  83. Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, "Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells," J. Mater. Chem. A, 3 15996-16004 (2015). https://doi.org/10.1039/C5TA02710A
  84. D.-Y. Lee, S.-I. Na, S.-S. Kim, "Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells," Nanoscale, 8 1513-22 (2016). https://doi.org/10.1039/C5NR05271H
  85. D. Li, J. Cui, H. Li, D. Huang, M. Wang, Y. Shen, "Graphene oxide modified hole transport layer for $CH_3NH_3PbI_3$ planar heterojunction solar cells," Sol. Energy, 131 176-82 (2016). https://doi.org/10.1016/j.solener.2016.02.049
  86. A. Agresti, S. Pescetelli, L. Cina, D. Konios, G. Kakavelakis, E. Kymakis, A. D. Carlo, "Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer," Adv. Funct. Mater., 26 [16] 2686-94 (2016). https://doi.org/10.1002/adfm.201504949
  87. A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha, L. Cina, V. Pellegrini, A. D. Carlo, F. Bonaccorso, "Few-layer $MoS_2$ flakes as active bufferlayer for stable perovskite solar cells," Adv. Energy Mater., 6 [16] 1600920 (2016). https://doi.org/10.1002/aenm.201600920
  88. Y. G. Kim, K. C. Kwon, Q. V. Le, K. Hong, H. W. Jang, S. Y. Kim, "Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells," J. Power Sources, 319 1-8 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.032
  89. J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, "Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells," J. Mater. Chem. A, 3 11750-5 (2015). https://doi.org/10.1039/C5TA01200G
  90. M. A. Mahmud, N. K. Elunalai, M. B. Upama, D. Wang, K. H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, "Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells," Sol. Energy Mater. Sol. Cells, 159 251-64 (2017). https://doi.org/10.1016/j.solmat.2016.09.014
  91. P. Huang, Z. Wang, Y. Liu, K. Zhang, L. Yuan, Yi. Zhou, B. Song, Y. Li, "Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells," ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.7b06403 (2017).