2차원 전이금속 칼코지나이드 기반 태양광 물분해 광전극

  • 김창연 (서울대학교 재료공학부) ;
  • 장호원 (서울대학교 재료공학부)
  • Published : 2017.09.30

Abstract

Keywords

References

  1. 2015 대한민국 에너지 편람 ,에너지관리공단, 2015
  2. BP Statistical Review of World Energy, 2017
  3. D. M. Andoshe, J. M. Jeon, S. Y. Kim, and H. W. Jang, "Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting," Electron. Mater. Lett., 11 [3] 323-335 (2015) https://doi.org/10.1007/s13391-015-4402-9
  4. Z. Chen, H. N. Dinh, and E. Miller, "Photoelectrochemical Water Splitting", Springer, New York (2013)
  5. K.Osseo-Asare, D. Wei, and K. K. Mishra, "Dissolution Windows for Wet Chemical Processing of Silicon and Silicon Dioxide: Potential pH Diagrams for the $SiFH_2O$ System," J. Electrochem. Soc., 143 [2] 749-751 (1996) https://doi.org/10.1149/1.1836512
  6. H. S. Kim, K. S. Ahn, and S. H. Kang, "Enhancing photoelectrochemical water splitting performance of $TiO_2$ nanotube arrays by controlling morphological properties," Electron. Mater. Lett. 10 [2] 345-349 (2014) https://doi.org/10.1007/s13391-013-3215-y
  7. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, "GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting," J. Am. Chem. Soc., 127 [23] 8286-8287 (2005) https://doi.org/10.1021/ja0518777
  8. B. Radisavlijevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer $MoS_2$ transistors," Nat. Nanotechnol., 6, 147-150 (2011) https://doi.org/10.1038/nnano.2010.279
  9. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., 7, 699-712 (2012) https://doi.org/10.1038/nnano.2012.193
  10. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nat. Chem., 5 [4] 263-275 (2013) https://doi.org/10.1038/nchem.1589
  11. E. Marseglia, "Transition Metal Dichalcogenides and Their Intercalates," Int. Rev. Phys. Chem., 3 [2] 177-216 (1983) https://doi.org/10.1080/01442358309353343
  12. J. Wilson and A. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phy., 18 [73] 193-335 (1969) https://doi.org/10.1080/00018736900101307
  13. F. Jellinek, "Transition metal chalcogenides. relationship between chemical composition, crystal structure and physical properties," React. Solid., 5 [4] 323-339 (1988) https://doi.org/10.1016/0168-7336(88)80031-7
  14. B. Abrams and J. Wilcoxon, "Nanosize Semiconductors for Photooxidation," Crit. Rev. Solid State, 30 [3] 153-182 (2005) https://doi.org/10.1080/10408430500200981
  15. L. Mattheis, "Band Structures of Transition-Metal-Dichalcogenide Layer Compounds," Phys. Rev. B, 8 [8] 3719-3740 (1973) https://doi.org/10.1103/PhysRevB.8.3719
  16. L. Mattheis, "Energy Bands for 2H-$NbSe_2$ and 2H-$MoS_2$," Phys. Rev. Lett., 30 [17] 784-787 (1973) https://doi.org/10.1103/PhysRevLett.30.784
  17. S. Mahatha, K. Patel, and K. S. Menon, "Electronic structure investigation of $MoS_2$ and $MoSe_2$ using angle-resolved photoemission spectroscopy and ab initio band structure studies," J. Phy-Condens. Mat., 24 [47] 475504 (2012) https://doi.org/10.1088/0953-8984/24/47/475504
  18. H. Jiang, "Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach," J. Phys. Chem. C, 116 [14] 7664-7671 (2012) https://doi.org/10.1021/jp300079d
  19. H. Terrones, F. Lopez-Urias, and M. Terrones, "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides," Sci. Rep., 3 1549 (2013) https://doi.org/10.1038/srep01549
  20. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, "Evolution of Electronic Structure in Atomically Thin Sheets of $WS_2$ and $WSe_2$," ACS Nano, 7 [1] 791-797 (2012) https://doi.org/10.1021/nn305275h
  21. H. L. Zhuang and R. G. Hennig, "Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts," J. Phys. Chem. C, 117 [40] 20440-20445 (2013) https://doi.org/10.1021/jp405808a
  22. A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide $TS_2$," Phys. Rev. B, 83 [24] 245213 (2011) https://doi.org/10.1103/PhysRevB.83.245213
  23. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khot-kevich, S. Morozov, and A. Geim, "Two-dimensional atomic crystals," P. Natl. Acad. Sci. USA, 102 [30] 10451-10453 (2005) https://doi.org/10.1073/pnas.0502848102
  24. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, "Liquid Exfoliation of Layered Materials," Science, 340, 1226419 (2013) https://doi.org/10.1126/science.1226419
  25. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith,I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, 331 [6017] 568-71 (2011) https://doi.org/10.1126/science.1194975
  26. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, "Single-layer semiconducting nanosheets: high-yield preparation and device fabrication," Angew. Chem. Int. Ed., 50 [47] 11093-11097 (2011) https://doi.org/10.1002/anie.201106004
  27. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, "High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide," Nat. Commun., 5, 2995 (2014) https://doi.org/10.1038/ncomms3995
  28. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, "Controlled scalable synthesis of uniform, high-quality monolayer and few-layer $MoS_2$ films," Sci. Rep.. 3, 1866 (2013) https://doi.org/10.1038/srep01866
  29. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, "Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production," Energy Environ. Sci., 9 2240-2248 (2016) https://doi.org/10.1039/C6EE00144K
  30. J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, "Chemical vapor deposition growth of monolayer $MoSe_2$ nanosheets," Nano Res., 7 [4] 511-517 (2014) https://doi.org/10.1007/s12274-014-0417-z
  31. Q. Ding, F. Meng, C. R. English, M. Caban-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, "Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic $MoS_2$," J. Am. Chem. Soc., 136, 8504-8507 (2014) https://doi.org/10.1021/ja5025673
  32. A. L. Elias, N. Perea-Lopez, A. S. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, "Controlled Synthesis and Transfer of Large-Area $WS_2$ Sheets: From Single Layer to Few Layers," ACS Nano, 7 [6] 5235-5242 (2013) https://doi.org/10.1021/nn400971k
  33. T. Scharf, S. Prasad, T. Mayer, R. Goeke, and M. Dugger, "Atomic layer deposition of tungsten disulphide solid lubricant thin films," J. Mater. Res., 19 [12] 3443-3446 (2004) https://doi.org/10.1557/JMR.2004.0459
  34. L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, "Atomic layer deposition of a $MoS_2$ film," Nanoscale, 6 [18] 10584-8 (2014) https://doi.org/10.1039/C4NR02451F
  35. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, "Ab Initio Study of the H2-$H_2S$/$MoS_2$ Gas-Solid Interface: The Nature of the Catalytically Active Sites," J. Catal., 189 [1] 129-146 (2000) https://doi.org/10.1006/jcat.1999.2698
  36. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Norskov, "Biomimetic hydrogen evolution: $MoS_2$ nanoparticles as catalyst for hydrogen evolution.," J. Am. Chem. Soc., 127 [15] 5308-9 (2005) https://doi.org/10.1021/ja0504690
  37. T. F. Jaramillo, K. P. Joorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, "Identification of active edge sites for electrochemical $H_2$ evolution from $MoS_2$ nanocatalysts," Science, 317 [5834] 100-102 (2007) https://doi.org/10.1126/science.1141483
  38. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, "Engineering the surface structure of $MoS_2$ to preferentially expose active edge sites for electrocatalysis." Nat. Mater., 11 [11] 963-969 (2012) https://doi.org/10.1038/nmat3439
  39. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, "Ultrathin $WS_2$ nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction," Angew. Chem. Int. Ed., 53 [30] 7860-7863 (2014) https://doi.org/10.1002/anie.201402315
  40. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, "Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution," Chem. Sci., 3 [8] 2515-2525 (2012) https://doi.org/10.1039/c2sc20539d
  41. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, "Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic $MoS_2$ Nanosheets," J. Am. Chem. Soc., 135 [28] 10274-10277 (2013) https://doi.org/10.1021/ja404523s
  42. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, "Enhanced catalytic activity in strained chemically exfoliated $WS_2$ nanosheets for hydrogen evolution," Nat. Mater., 12 850-855 (2013) https://doi.org/10.1038/nmat3700
  43. J. Kim, S. Byun, A. J. Smith, J. Yu, and J. Huang, "Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration," J. Phys. Chem. Lett., 4 [8] 1227-1232 (2013) https://doi.org/10.1021/jz400507t
  44. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, and X. Wang, "Facile synthesis of low crystalline $MoS_2$ nanosheet-coated CNTs for enhanced hydrogen evolution reaction," Nanoscale, 5 7768-7771 (2013) https://doi.org/10.1039/c3nr02994h
  45. X. Xu, J. Hu, Z. Yin, and C. Xu, "Photoanode Current of Large-Area $MoS_2$ Ultrathin Nanosheets with Vertically Mesh-Shaped Structure on Indium Tin Oxide," ACS Appl. Mater. Interfaces, 6 [8] 5983-5987 (2014) https://doi.org/10.1021/am501159s
  46. Y. Liu, Y.-X. Yu, and W.-D. Zhang, "$MoS_2$/CdS Heterojunction with High Photoelectrochemical Activity for $H_2$ Evolution under Visible Light: The Role of $MoS_2$," J. Phys. Chem. C, 117 [25] 12949-12957 (2013) https://doi.org/10.1021/jp4009652
  47. K. C. Kwon, S. Choi, K. Hong, D. M. Andoshe, J. M. Suh, C. Kim, K. S. Choi, J. H. Oh, S. Y. Kim, and H. W. Jang, "Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production," MRS Communications, 7 272-279 (2017) https://doi.org/10.1557/mrc.2017.37
  48. X. Yu, M. S. Prevot, N. Guijarro, and K. Sivula, "Self-assembled 2D $WSe_2$ thin films for photoelectrochemical hydrogen production," Nat. Commun., 6 7596 (2015) https://doi.org/10.1038/ncomms8596
  49. K. C. Kwon, S. Choi, J. Lee, K. Hong, W. Sohn, D. M. Andoshe, K. S. Choi, Y. Kim, S. Han, S. Y. Kim, and H. W. Jang, "Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes," J. Mater. Chem. A, 5 [30] 15534-15542 (2017) https://doi.org/10.1039/C7TA03845C
  50. Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata, M. W. Chen, "Monolayer $MoS_2$ Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production," Adv. Mater., 26 [47] 8023-8028 (2014) https://doi.org/10.1002/adma.201403808