DOI QR코드

DOI QR Code

Study on the Electrical Conductivity and Catalytic Property by Structural Change of 70V2O5-10Fe2O3-13P2O5-7B2O3 Glass with Crystallization

  • Jeong, Hwa-Jin (Department of Materials Science and Engineering, Pusan National University) ;
  • Cha, Jae-Min (The Institute of Materials Technology, Pusan National University) ;
  • Ryu, Bong-Ki (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2017.06.26
  • Accepted : 2017.07.20
  • Published : 2017.09.30

Abstract

$70V_2O_5-10Fe_2O_3-13P_2O_5-7B_2O_3$ glasses were prepared to study the electrical conductivity and catalytic properties of the structural change with crystallization. The structural changes were analyzed by determining the molecular volume from the sample density; using X-Ray Diffraction (XRD) analysis, which indicated that $V_2O_5$, $VO_2$ and $B_2O_3$ crystals in heat-treated more than 1h samples. Especially a new crystalline phase of non-stoichiometric $Fe_{0.12}V_2O_5$ was formed after 6 h heat treatment. The V-O bonding change after crystallization was analyzed by Fourier Transform Infrared Spectroscopy (FTIR); V ion change from $V^{5+}$ to $V^{4+}$ was shown by XPS. Conductivity and catalytic properties were examined based on the polaronic hopping of V and Fe ions, which exhibited different valence states with crystallization.

Keywords

References

  1. I. A. Gohar, Y. M. Moustafa, A. A. Megahed, and E. Mansour, "Electrical Properties of Semiconducting Barium Vanadate Glasses Containing Iron Oxide," Phys. Chem. Glasses, 39 [1] 50-60 (1998).
  2. I. Kashif, H. Farouk, S. A. Aly, A. A. Abdel-Rahman, and A. M. Sanad, "Crystallization Process and Electrical Conductivity in Vanadium Borophosphate Glass Containing Iron," Mater. Sci. Eng., B, 10 [1] 1-5 (1991). https://doi.org/10.1016/0921-5107(91)90087-C
  3. L. D. Bogomolova, M. P. Glassova, O. E. Dubatovko, S. I. Reiman, and S. N. Spasibkina, "The Study of Interactions between Iron and Vanadium Ions in Semiconducting Barium-Vanadate Glasses Doped with $Fe_2O_3$," J. Non-Cryst. Solids, 58 [1] 71-89 (1983). https://doi.org/10.1016/0022-3093(83)90104-7
  4. E. Mansour, G. El-Damrawi, S. Abdel-Maksoud, and H. Doweidar, "Electrical Conduction in BaO-$V_2O_5$-$B_2O_3$ and BaO-$Fe_2O_3$-$V_2O_5$-$B_2O_3$ Glasses: A Comparative Study," Phys. Chem. Glasses, 43 [2] 80-6 (2002).
  5. M. M. El-Desoky, "Small Polaron Transport in $V_2O_5$-NiO$TeO_2$ Glasses," J. Mater. Sci.: Mater. Electron., 14 [4] 215-21 (2003). https://doi.org/10.1023/A:1022981929472
  6. D. K. Kanchan, R. G. Mendiratta, and R. K. Puri, "An Infrared Study of the $Na_2O$-$V_2O_5$-$Fe_2O_3$ Glass System," J. Mater. Sci., 21 [7] 2418-22 (1986). https://doi.org/10.1007/BF01114286
  7. N. F. Mott, "Conduction in Glasses Containing Transition Metal Ions," J. Non-Cryst. Solids., 1 [1] 1-17 (1968). https://doi.org/10.1016/0022-3093(68)90002-1
  8. N. Yoshida, K. Kazehara, Y. Kawamoto, and S. Kishimoto, "Changes in the Catalytic Properties Caused by the Crystallization of a Vanadate Glass on the Decomposition of Formic Acid," Chem. Lett., 8 [6] 667-70 (1979). https://doi.org/10.1246/cl.1979.667
  9. E. Gillis and E. Boesman, "E. P. R.-Studies of $V_2O_5$ Single Crystals. I. Defect Centres in Pure, Non-stoichiometric Vanadium Pentoxide," Phys. Status Solidi B, 14 [2] 337-47 (1966). https://doi.org/10.1002/pssb.19660140211
  10. K. Hermann, M. Witko, R. Druzinic, and R. Tokarz, "Oxygen Vacancies at Oxide Surfaces: Ab Initio Density Functional Theory Studies on Vanadium Pentoxide," Appl. Phys. A, 72 [4] 429-42 (2001). https://doi.org/10.1007/s003390100756
  11. S. Maingot, P. Deniard, N. Baffler, J. P. Pereira-Ramos, A. Kahn-Harari, R. Brec, and P. Willmann, "Origin of the Improved Cycling Capability of Sol-Gel Prepared $Fe_{0.12}V_2O_{5.16}$ Compared with $V_2O_5$," J. Power Sources, 54 [2] 342-45 (1995). https://doi.org/10.1016/0378-7753(94)02097-M
  12. A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T.-O. Do, and P. M. Breen, "X-ray Photoelectron Spectroscopy (XPS) and FTIR Studies of Vanadium Barium Phosphate Glasses," Mater. Chem. Phys., 143 [2] 779-87 (2014) https://doi.org/10.1016/j.matchemphys.2013.10.013
  13. S. Mandal, S. Hazra, D. Das, and A. Ghosh, "Structural Studies of Binary Iron Vanadate Glass," J. Non-Cryst. Solids, 183 [3] 315-19 (1995). https://doi.org/10.1016/0022-3093(94)00571-0
  14. R. Iordanova, Y. Dimitriev, V. Dimitrov, and D. Klissurski, "Structure of $V_2O_5$-$MoO_3$-$Fe_2O_3$ glasses," J. Non-Cryst. Solids, 167 [1-2] 74-80 (1994). https://doi.org/10.1016/0022-3093(94)90369-7
  15. R. Iordanova, Y. Dimitriev, V. Dimitrov, S. Kassabov, and D. Klissurski, "Glass Formation and Structure in the $V_2O_5$-$Bi_2O_3$-$Fe_2O_3$ Glasses," J. Non-Cryst. Solids, 204 [2] 141-50 (1996). https://doi.org/10.1016/S0022-3093(96)00416-4
  16. T. Nishida and Y. Takashima, "Mossbauer and DTA Studies of Semiconducting Potassium Vanadate Glasses Containing Iron," Bull. Chem. Soc. Jpn., 60 [3] 941-46 (1987). https://doi.org/10.1246/bcsj.60.941
  17. I. L. Botto, M. B. Vassallo, E. J. Baran, and G. Minelli, "IR Spectra of $VO_2$ and $V_2O_3$," Mater. Chem. Phys., 50 [3] 267-70 (1997). https://doi.org/10.1016/S0254-0584(97)01940-8
  18. A. Bianconi and A. Giovannelli, "Xanes (X-ray Absorption near Edge Structure) of V in Vanadium-Iron Phosphate Glasses," Solid State Commun., 42 [8] 547-51 (1982). https://doi.org/10.1016/0038-1098(82)90605-6
  19. M. Demeter, M. Neumann, and W. Reichelt, "Mixed-Valence Vanadium Oxides Studied by XPS," Surf. Sci., 454 [20] 41-4 (2000).
  20. G. D. Khattaka, A. Mekki, and L. E. Wenger, "X-ray Photoelectron Spectroscopy (XPS) and Magnetic Susceptibility Studies of Vanadium Phosphate Glasses," J. Non-Cryst., 355 [43-44] 2148-55 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.042
  21. M. A. Salim, G. D. Khattak, P. S. Fodor, and L. E. Wenger, "X-ray Photoelectron Spectroscopy (XPS) and Magnetization Studies of Iron-Vanadium Phosphate Glasses," J. Non-Cryst. Solids, 289 [1-3] 185-95 (2001). https://doi.org/10.1016/S0022-3093(01)00727-X
  22. J. Mendialdua, R. Casanova, and Y. Barbaux, "XPS Studies of $V_2O_5$, $V_6O_{13}$, $VO_2$ and $V_2O_3$," J. Electron Spectrosc. Relat. Phenom., 71 [3] 249-61 (1995). https://doi.org/10.1016/0368-2048(94)02291-7
  23. T. Yamashita and P. Hayes, "Analysis of XPS Spectra of $Fe^{2+}$ and $Fe^{3+}$ Ions in Oxide Materials," Appl. Surf. Sci., 254 [8] 2441-49 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
  24. K. Sega, Y. Kuroda, and H. Sakata, "D.c. Conductivity of $V_2O_5$-MnO-$TeO_2$ Glasses," J. Mater. Sci., 33 [5] 1303-8 (1998). https://doi.org/10.1023/A:1004302431797
  25. A. Bianconi, A. Giovannelli, I. Davoli, S. Stizza, L. Palladino, O. Gzowski, and L. Murawski, "Xanes (X-ray Absorption near Edge Structure) of V in Vanadium-Iron Phosphate Glasses," Solid State Commun., 42 [8] 547-51 (1982). https://doi.org/10.1016/0038-1098(82)90605-6

Cited by

  1. Ac conductivity of transition metal oxide doped glassy nanocomposite systems: temperature and frequency dependency vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad43e