DOI QR코드

DOI QR Code

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand

고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구

  • Received : 2017.03.24
  • Accepted : 2017.05.10
  • Published : 2017.09.01

Abstract

In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

이 연구에서는 고연성 PET 시트 및 HF(PET+aramid) 스트랜드로 보강한 RC 원형 기둥의 내진 보강 성능에 대하여 실험적으로 비교 고찰하였다. 고연성 PET 및 HF 스트랜드로 횡 구속된 RC 원형 기둥의 내진 성능 실험결과, 모든 보강 기둥에서 최대 휨 강도 및 연성 능력 모두 무보강 기둥보다 향상되었으며 극한단계에서 섬유의 파단은 발생하지 않았다. 또한 PET 시트 25겹 보강 기둥과 HF 스트랜드 1겹 보강 기둥의 저항 내력 및 변위가 거의 유사하여 HF 스트랜드 1겹은 PET 시트 약 25겹(동일 폭 기준)과 동일한 횡 구속 효과를 나타내었다. 결과적으로 휨 강도 증진 및 연성 능력 측면에서 PET는 RC 구조물의 내진 보강재로서 적합한 것으로 사료되나 현장적용의 가능성을 높이기 위해서는 이 연구에서 사용된 HF 스트랜드와 같이 많은 양의 섬유를 함유한 제작품과 같이 1겹으로 다수 PET 시트의 성능 효과를 내는 재료가 필요할 것으로 사료된다. 한편 PET의 내구성에 대해서는 별도의 연구가 필요하며 현재 연구가 진행중이다.

Keywords

References

  1. ACI 374. 2R-13 (2013) Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads, ACI Committee 374, American Concrete Institute, Detroit, Michigan, 18 pp.
  2. ACI 440. 2R-08 (2008), Guild for Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI Committee 440, American Concrete Institute, Detroit, Michigan, 76 pp.
  3. ACI 440.1R-06 (2006), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI Committee 440, American Concrete Institute, Detroit, MI.
  4. Aggawidjaja, D., Ueda, T., Dai, J., and Nakai, H. (2006), Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain, Cement and Concrete Composites, 28, 914-927. https://doi.org/10.1016/j.cemconcomp.2006.07.011
  5. Choi Donguk, Vachirapanyakun, S., Kim, S.-Y., and Ha, S.-S. (2015), Ductile Fiber Wrapping for Seismic Retrofit of Reinforced Concrete Columns, Journal of Asian Concrete Federation, 1(1), 37-46. https://doi.org/10.18702/acf.2015.09.1.37
  6. ISO 10406-2 (2015), Fibre-reinforced polymer (FRP) reinforcement of concrete - Test methods - Part. 2: FRP sheets, Geneva, Switzerland.
  7. Jaqin, H., Nakai, H., Ueda, T., Sato, Y., and Dai, J. (2005), Seismic retrofitting of RC piers using continuous fiber sheet with large fracturing strain, JSCE Journal of Construction Engineering and Management, Japan Society of Civil Engineers, 51A, 893-902.
  8. Mander, J. B., Priestly, M. J. N., and Park, R. (1988), Theoretical Stress-Strain Model for Confined Concrete, ASCE Journal of Structural Engineering, American Society of Civil Engineering, pp. 1804-1826.
  9. Manders, P. W. and Bader, M. G. (1981), The Strength of Hybrid Glass/Carbon Fibre Composites, Part. 1: Failure Strain Enhancement and Failure Mode, Journal of Materials Science, 16, 2233-2245. https://doi.org/10.1007/BF00542386
  10. Toutanji, H. A. (1999), Stress-Strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets, ACI Materials Journal, 96(3), 397-404.
  11. Vachirapanykun, S., Lim, M. K., and Choi, D. U. (2016), Seismic Performance of Circular RC Retrofitted Using Ductile PET Fibers, Journal of the Korea Concrete Institute, 28(3), 289-298. https://doi.org/10.4334/JKCI.2016.28.3.289
  12. Vachirapnayakun, S. (2015), External Strengthening of Reinforced Concrete Members Using Ductile Fibers, Master's Thesis of Hankyong National University, Anseong, Gyeonggi, Korea.