DOI QR코드

DOI QR Code

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns

철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가

  • Received : 2017.04.25
  • Accepted : 2017.05.16
  • Published : 2017.11.01

Abstract

Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

원형 기둥의 나선철근은 축방향 철근의 위치 고정 및 좌굴방지와 코어콘크리트의 충분한 횡구속으로 기둥의 연성거동에 효과적인 역할을 한다. 각국은 기둥에 요구되는 연성을 확보하기 위하여 나선철근의 최소철근비를 제시하고 있다. ACI 318-14와 국내 콘크리트 구조설계 기준에서 제시하는 나선철근 최소철근비는 Richart et al.(1928)의 이론에 기초하여 개발되었으며 현재까지 사용되고 있다. 그러나 Richart et al.(1928)의 이론은 현대의 고강도 콘크리트, 고강도철근 그리고 나선철근의 배근조건 등의 영향을 고려하지 못한다. 이 연구에서는 나선철근으로 구속된 철근콘크리트 원형 기둥의 내력회복 및 연성증진에 요구되는 나선철근에 대한 수정 최소철근비 산정식을 제시한다. 수정 최소철근비 산정식은 콘크리트 압축강도, 나선철근 항복강도, 기둥의 단면적, 나선철근 배근간격, 나선철근 직경의 영향을 고려하고 있다. 이 논문에서는 재료강도 및 나선철근 최적비를 변수로 한 실험체의 일축 압축실험을 통하여 ACI 318-14에 제시하는 나선철근 최소철근비 산정식의 타당성을 검토하고, 그 결과를 토대로 나선철근 최소철근비 산정식의 수정방안을 고찰하였다.

Keywords

References

  1. ACI Committee 318 (2014), Building Code Require for Structural Concrete, ACI 318-14, American Concrete Institute, USA.
  2. ATC-32 (1996), Improved Seismic Design Criteria for California Bridges; provisional recommendations, Applied Technology Council California, USA.
  3. Balmer, G. G. (1949), Shearing strength of concrete under high triaxial stress-computation of mohr' envelope as a curve, Structural Research Laboratory Report No. SP-23, U. S. Bureau of Reclamation, 13.
  4. El-Dash, K. M. and Ahmad, S. H. (1995), A model for stress-strain relationship of spirally confined normal and high-strength concrete columns, Mag. Concrete Res., 47(171), 177-184. https://doi.org/10.1680/macr.1995.47.171.177
  5. Kent, D. C. and Park, R. (1971), Flexural members with confined concrete, J. Struct. Div. ASCE, 97(7), 1969-1990.
  6. Kim, Y. S., Kim, S. W., Lee, J. Y., Lee, J. M., Kim, H. G., and Kim, K. H. (2016), Prediction of stress-strain behavior of spirally confined concrete considering lateral expansion, Constr. Build. Mater., 102(2016), 743-761. https://doi.org/10.1016/j.conbuildmat.2015.11.017
  7. Korea Concrete Institute (2012), Concrete Structure Design Standard, Korea (In Korean).
  8. Lee, J. Y. (2013), Reinforced Concrete Structures, DongHwa Technology Publishing Co., 44-45.
  9. Mander, J. B., Priestley, M. J. N., and Park, R. (1988), Theoretical stress-strain model for confined concrete, J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  10. NZS 3101 Part 1 (2006), Concrete Structures Standard, Standard Association of New Zealand.
  11. Popovics, S. (1973), Anumerical approach to the complete stress-strain curve of concrete, J. Struct. Eng., 3(5), 583-599.
  12. Richart, F. E., Brandzaeg, A., and Brown, R. L. (1928), A study of the failure of concrete under combined compressive stresses, Bull. No. 185, University of Illinois, Engineering Experimenntal Station, Urbana, Ill., 74.