DOI QR코드

DOI QR Code

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate

일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동

  • 이방연 (전남대학교 건축학부) ;
  • 강수태 (대구대학교 건설시스템공학과)
  • Received : 2017.09.28
  • Accepted : 2017.10.10
  • Published : 2017.11.01

Abstract

This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

이 연구에서는 PE 섬유를 사용한 고연성 시멘트 복합체에 대해 최대입경 4.75 mm의 일반모래(강모래)를 규사와 서로 다른 비율로 혼합하여 사용하였을 때, 그에 따른 고연성 시멘트 복합체의 인장거동 변화를 실험을 통해 살펴보고자 하였다. 유동성 평가 실험에서는 강모래 치환율이 증가함에 따라 유동성이 증가하는 것으로 나타났다. 압축강도는 평균압축강도에는 큰 차이가 없었으나, 편차의 크기가 강모래 치환율이 증가할수록 증가하는 것으로 나타났다. 일축인장시험 결과에서는 강모래 치환율에 따른 인장강도의 변화는 거의 없는 것으로 나타났으며, 인장변형률 성능에서는 강모래 치환율이 증가함에 따라 향상되는 결과를 나타내었다. 강모래 치환율이 증가함에 따라 다중균열의 분포밀도가 증가하면서 인장변형률 성능의 향상된 것으로 보인다. 한편, 인장변형률 성능의 편차는 압축강도에서와 마찬가지로 강모래 치환율이 증가함에 따라 커지는 양상을 나타내었다. 이 연구를 통해 규사 대신 일반모래를 사용한 경우에도 고연성 시멘트 복합체의 인장거동의 변동성은 증가하지만, 규사를 사용한 고연성 시멘트 복합체와 비교할 때 등가 이상의 인장성능을 나타낼 수 있음을 확인하였다.

Keywords

References

  1. De Koker, D. and van Zijl, G. (2004), Extrusion of Engineered Cement-Based Composite Material, Proceedings of BEFIB, Varenna, Lake Como, Italy, Sept, 1301-1310.
  2. de Larrard, F. and Sedran, T. (1994), Optimization of Ultra-High Performance Concrete by the Use of A Packing Model, Cement and Concrete Research, 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1
  3. Fuller, W. B. and Thompson, S. E. (1907), The Laws of Proportioning Concrete, Transactions of the American Society of Civil Engineers, 59, 67-143.
  4. JCI-DFRCC Committee (2003), DFRCC Terminology and Application Concepts, Journal of Advanced Concrete Technology, 1(3), 335-340. https://doi.org/10.3151/jact.1.335
  5. Kanakubo, T., Kabele, P., Fukuyama, H., Uchida, Y., Suwada, H., and Slowik, V. (2013), in Strain Hardening Cement Composites: Structural Design and Performance, State-of-the-Art Report of the RILEM Technical Committee 208-HFC, SC3.
  6. Kwon, S. J., Kang, S. T., Choi, J. I., and Lee, B. Y. (2016), Compressive and Tensile Behavior of Polyetylene Fiber Reinforced Composite According to Silica Sand and Fly Ash, Journal of Recycled Construction Resources, 4(1), 25-30.
  7. Lee, B. Y. (2012), Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application, Journal of Korea Institute of Structural Maintenance and inspection, 16(1), 55-63. https://doi.org/10.11112/jksmi.2012.16.1.055
  8. Lee, B. Y., Li, V. C., and Kim, Y. Y. (2013), Polypropylene Fiber-Based Strain-Hardening Cementitious Composites, Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, September, 8-12, 444-457.
  9. Li, V. C. (1998), ECC-Tailored Composites through Micromechanical Modeling, Fiber Reinforced Concrete: Present and the Future, N. Banthia et al., eds., CSCE, Montreal, QC, Canada, 64-97.
  10. Li, V. C. (2003), On Engineered Cementitious Composites (ECC) - A Review of the Materials and its Applications, Advanced Concrete Technology, 1(3), 215-230. https://doi.org/10.3151/jact.1.215
  11. Li, V. C., Wang, S., and Wu, C. (2001), Tensile Strain-Hardening Behavior of PVA-ECC, ACI Materials Journal, 98(6), 483-492.
  12. Maalej, M., Hashida, T., and Li, V. C. (1995) Effect of Fiber Volume Fraction on the Off-Crack Plane Energy in Strain-hardening Engineered Cementitious Composites, Journal of American Ceramic Society, 78(12), 3369-3375. https://doi.org/10.1111/j.1151-2916.1995.tb07979.x
  13. Matsumoto, T., Suthiwarapirak, P., and Kanda, T. (2003), Mechanisms of Multiple Cracking and Fracture of DFRCC under Fatigue Flexure, Journal of Advanced Concrete Technology, 1(3), 299-306. https://doi.org/10.3151/jact.1.299
  14. Mechtcherine, V., de Andrade Silva, F., Butler, M., Zhu, D., Mobasher, B., Gao, S., and Mader, E. (2011), Behavior of Strain-Hardening Cement-Based Composites Under High Strain Rates, Journal of Advanced Concrete Technology, 9(3), 51-62. https://doi.org/10.3151/jact.9.51
  15. Nallthambi, P., Karihaloo, B., and Heaton, B. (1984), Effect of Specimen and Crack Sizes, Water/Cement Ratio and Coarse Aggregate Texture upon Fracture Toughness of Concrete, Magazine of Concrete Research, 36(129), 227-236. https://doi.org/10.1680/macr.1984.36.129.227
  16. Shin, S. K., Kim, J. J. H., and Lim, Y. M. (2007), Investigation of the strengthening effect of DFRCC applied to plain concrete beams, Cement and Concrete Composites, 29(6), 465-473. https://doi.org/10.1016/j.cemconcomp.2007.02.005
  17. Wang, S. and Li, V. C. (2003), Lightweight Engineered Cementitious Composites(ECC), Proceedings of High Performance Fiber Reinforced Cement Composites(HPFRCC4), Ann Arbor, USA, 379-390.