DOI QR코드

DOI QR Code

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges

FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안

  • 안호준 (고려대학교 건축사회환경공학부) ;
  • 박철우 (강원대학교 건설시스템공학과) ;
  • 김용재 (강원대학교 건설시스템공학과) ;
  • 장영익 (고려대학교 건축사회환경공학부) ;
  • 공정식 (고려대학교 건축사회환경공학부)
  • Received : 2017.10.11
  • Accepted : 2017.10.16
  • Published : 2017.11.01

Abstract

In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

최근 교통과 물류의 발달과 함께 위험물 수송의 증가와 교통량의 증가로 인하여, 주요한 사회기반시설물 중 하나인 교량에 대하여 예상하지 못한 화재사고 화재 발생이 증가하는 추세이다. 또한, 교량 하부 공간의 효율적인 사용에 대한 요구가 늘어남에 따라, 하부에 유조차 및 화물차 등의 위험물질이 적치되는 비율이 증가하고 있으며, 앞서 기술한 이유들로 인하여 최근 교량의 화재 발생 위험성이 급격히 증가하고 있다. 하지만, 이러한 피해를 줄이기 위해, 교량에 대한 화재 위험도 평가가 수행된 사례가 있으나, 사용자의 관점에서 안전성을 고려한 실용적으로 위험도를 평가할 수 있는 모델이 부족하다. 이에 본 연구에서는 국도교량에 적용 가능한 정량적인 위험도 평가모델을 제시하였다. 교량의 화재위험도에 큰 영향을 미치는 형하고, 화재강도, 교량의 재료, 소방차량 도착시간 등을 주요인자들로 선정하였으며, 선정된 인자들을 FDS에 반영하여 화재강도와 지속시간에 따른 각 교량의 최고 온도를 산출하였다. FDS 해석결과와 위험도 등급기준, 소방차량 도착시간을 반영한 화재 위험도 평가 모델과 위험도에 따른 대응방안을 수립하였다. GIS의 네트워크 분석기능을 통해 소방서에서 교량까지의 도착시간을 예시적으로 산출하였으며, 이를 통해 예시적인 교량의 위험도 등급을 평가하고, 그에 따른 대응방안을 제안하였다.

Keywords

References

  1. Astaneh-Asl, A., Noble, C. R., Son, J., Wemhoff, A. P., Thomas, M. P., and McMichael, L. D. (2009), Fire protection of steel bridges and the case of the MacArthur maze fire collapse. In TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment, 1-12.
  2. Baik, H. S., Park, C. W., and Shim, J. W. (2016), Need for Confrontational Strategy of Bridge Fire Protection with Domestic and Foreign Cases, JOURAN OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, 64(7), 10-12.
  3. Cremona, C. (2012), Structural performance: Probability-based assessment, John Wiley & Sons, Hoboken, NJ07030.
  4. Domone, P. L. J. and Illston, J. M. eds. (2010), Construction materials: their nature and behaviour, 4th ed, Spon Press, Milton Park, Abingdon, Oxon, New York.
  5. Haack, A. (1998). Fire protection in traffic tunnels: general aspects and results of the EUREKA project. Tunnelling and underground space technology, 13(4), 377-381. https://doi.org/10.1016/S0886-7798(98)00080-7
  6. Hurley, M. J., Gottuk, D. T., Hall, J. R., Harada, K., Kuligowski, E. D., Puchovsky, M., Torero, J. L., Watts, J. M., and Wieczorek, C. J. eds. (2016), SFPE Handbook of Fire Protection Engineering, Springer New York, New York, NY.
  7. Kim, W., Jeoung, C., Gil, H., Lee, I., Yun, S. H., and Moon, D. Y. (2013), Fire Risk Assessment for Highway Bridges in South Korea. Transportation Research Record, Journal of the Transportation Research Board, (2551), 137-145.
  8. Koo, S. and Yoo, H. H. (2012), An analysis of fire area in Jinju city based on fire mobilization time. Journal of Korean Society for Geospatial Information System, 20(4), 127-134. https://doi.org/10.7319/kogsis.2012.20.4.127
  9. Lacroix, D. (1998), The new piarc report on fire and smoke control in road tunnels, 185-197.
  10. Lee, H. H. and Sim, J. H. (2011), GIS Geographic Information Science: Theory and Practice, Beop Moons, Gyeonggi-do, 10881.
  11. Lee, J. B., Kim, I. K., and Cha, C. J. (2011), Fire Damage Case and Condition Analysis about Concrete Bridges, Magazine of the Korea Concrete Institute, 23(3), 32-38. https://doi.org/10.22636/MKCI.2011.23.3.32
  12. Martin, D. T. (1999), Fire service emergency cover planing a flexible response, International Conference on Fire Service Development Analysis, Jennings, C. R(Ed.). Attendees Proceedings, Indianapolis, 2-8.
  13. McGrattan, K., Hostikka, S., Floyd, J., Baum, H., Rehm, R., Mell, W., and McDermott, R. (2004), Fire dynamics simulator (version 5), technical reference guide, NIST Special Publication.
  14. Peacock, R., Jones, W., Reneke, P., and Forney, G. (2005), CFAST-8 Consolidated Model of Fire Growth and Smoke Transport(Version 6) User' Guide, NIST Special Publication.
  15. The Korean Ministry of Land, Infrastructure and Transport (2016), The National Guideline for the Installation of Road Tunnel Fire Safety Facilities.
  16. Wright, W., Lattimer, B., Woodworth, M., Nahid, M., and Sotelino, E. (2013). Highway bridge fire hazard assesment, draft final report. Virginia polytechnic institute and state university. TRB Project, (12-85).
  17. Zhai, C., Guo, Y., Lou, Y., and Lu, Y. (2014), Evaluation and repair of fire damage to the concrete structures of a high-rise building (2014), in: M. Grantham, P. Basheer, B. Magee, M. Soutsos (Eds.), Concrete Solutions 2014, CRC Press, 485-491.
  18. Zi, G. S., Lee, S. J., Shin, Y. H., Shim, J. W., and Kim, J. H. (2011). Investigation of the Fire Source in the Warehouse under Bridge using FDS Code. Journal of the Computational Structural Engineering Institute of Korea, 24(6), 663-673.