DOI QR코드

DOI QR Code

Degraded Products Induced by Gamma-Irradiation of Mangiferin with Anti-Diabetic Complication Effects

감마선 조사에 의한 Mangiferin 변화물의 항당뇨합병증 활성

  • Jeong, Gyeong Han (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 정경한 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2017.08.04
  • Accepted : 2017.09.14
  • Published : 2017.11.30

Abstract

Inhibition of advanced glycation end product (AGE) formation is a valuable therapeutic strategy for the regulation of diabetic complications. This study was conducted to identify potential therapeutic targets of anti-diabetic complications from irradiated mangiferin using AGE formation assay. Radiolytic degradation of the xanthone glucoside mangiferin by gamma-irradiation resulted in three degraded mangiferin analogues: mangiferdiol (1), mangiferinol (2), and isomangiferinol (3). Structures of the three newly generated compounds were characterized by interpretation of nuclear magnetic resonance ($^1H$, $^{13}C$ NMR, $^1H-^1H$ COSY, HSQC, HMBC, and NOESY) and mass spectroscopic data. The anti-diabetic complication of the generated mangiferin derivatives were tested using in vitro AGE formation method. Among the tested degraded products, mangiferinol (2) and isomangiferinol (3) exhibited significantly improved potency against AGE formation inhibitory activities with $IC_{50}$ values of $5.6{\pm}0.8$ and $7.6{\pm}0.9{\mu}M$, respectively. This result implies that xanthone derivatives generated from gamma-irradiated mangiferin might be beneficial for prevention of diabetic complication and related diseases.

감마선 조사로부터 당뇨합병증에 효과적인 소재를 개발하기 위하여 본 연구를 수행하였으며, mangiferin의 감마선 조사산물이 최종당화산물 생성 저해에 우수한 활성이 나타나 효능성분의 동정을 위하여 ODS gel을 활용한 column chromatography를 수행하여 3종의 mangiferin 유도체 화합물을 분리하였고, 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석을 통하여 mangiferdiol(1), mangferinol(2) 및 isomangiferinol(3)로 동정하였다. 이들 화합물에 대해 최종당화산물 생성 저해 활성을 평가한 결과 mangferinol(2)이 가장 강한 $5.6{\pm}0.8{\mu}M$$IC_{50}$ 값을 나타내었고, isomangiferinol(3)가 $7.6{\pm}0.9{\mu}M$$IC_{50}$ 값을 나타내었다. 또한, mangiferdiol(1)이 $12.1{\pm}1.3{\mu}M$$IC_{50}$ 값을 나타냈으며, 이들 활성은 mangiferin의 ketone기가 소실되고 새롭게 생성된 methyl기와 hydroxymethyl기의 결합 양상에 따른 화합물의 구조에 따라 다름이 시사되었다. 향후 이들 활성물질의 활성 기작에 대한 추가적인 연구가 필요하며 기존 유효 성분보다 우수한 최종당화산물 생성 저해 활성을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 활용할 수 있으리라 판단된다.

Keywords

References

  1. Scully T. 2012. Diabetes in numbers. Nature 485: 2-3. https://doi.org/10.1038/485S2a
  2. Ahmed N. 2005. Advanced glycation endproducts: Role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  3. Brownlee M. 2005. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  4. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE. 2006. Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432. https://doi.org/10.2337/dc05-2096
  5. Peyroux J, Sternberg M. 2006. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol 54: 405-419. https://doi.org/10.1016/j.patbio.2006.07.006
  6. Matsuda H, Wang T, Managi H, Yoshikawa M. 2003. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11: 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
  7. Edelstein D, Brownlee M. 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26-29.
  8. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. 2002. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832. https://doi.org/10.2337/diabetes.51.9.2826
  9. Doggrell SA. 2001. ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin Investig Drugs 10: 981-983. https://doi.org/10.1517/13543784.10.5.981
  10. Yokozawa T, Nakagawa T, Terasawa K. 2001. Effects of oriental medicines on the production of advanced glycation endproducts. J Trad Med 18: 107-112.
  11. Chompoo J, Upadhyay A, Kishimoto W, Makise T, Tawata S. 2011. Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes. Food Chem 129: 709-715. https://doi.org/10.1016/j.foodchem.2011.04.034
  12. Miroliaei M, Khazaei S, Moshkelgosha S, Shirvani M. 2011. Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food Chem 129: 267-271. https://doi.org/10.1016/j.foodchem.2011.04.039
  13. Gerassim MK, Paraskev TN. 1998. Mangiferin and isomangiferin in some Hypericum species. Biochem Syst Ecol 26: 647-653. https://doi.org/10.1016/S0305-1978(98)00010-6
  14. Pinto MM, Sousa ME, Nascimento MS. 2005. Xanthone derivatives: New insights in biological activities. Curr Med Chem 12: 2517-2538. https://doi.org/10.2174/092986705774370691
  15. Hong SI, Kim JY, Cho SY, Park HJ. 2010. The effect of gamma irradiation on oleic acid in methyl oleate and food. Food Chem 121: 93-97. https://doi.org/10.1016/j.foodchem.2009.12.008
  16. Ouattara B, Giroux M, Yefsah R, Smoragiewicz W, Saucier L, Borsa J, Lacroix M. 2002. Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiat Phys Chem 63: 299-304. https://doi.org/10.1016/S0969-806X(01)00516-3
  17. Chawla SP, Chander R, Sharma A. 2009. Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins. Food Chem 116: 122-128. https://doi.org/10.1016/j.foodchem.2009.01.097
  18. Song HP, Kim DH, Yook HS, Kim KS, Kwon JH, Byun MW. 2004. Application of gamma irradiation for aging control and improvement of shelf-life of kimchi, Korean salted and fermented vegetables. Radiat Phys Chem 71: 57-60. https://doi.org/10.1016/j.radphyschem.2004.04.005
  19. Kim JH, Kim DH, Ahn HJ, Park HJ, Byun MW. 2005. Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control 16: 43-49. https://doi.org/10.1016/j.foodcont.2003.11.004
  20. Wei F, Xu X, Zhou G, Zhao G, Li C, Zhang Y, Chen L, Qi J. 2009. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening. Meat Sci 81: 451-455. https://doi.org/10.1016/j.meatsci.2008.09.005
  21. Moon S, Song KB. 2001. Effect of ${\gamma}$-irradiation on the molecular properties of ovalbumin and ovomucoid and protection by ascorbic acid. Food Chem 74: 479-483. https://doi.org/10.1016/S0308-8146(01)00166-2
  22. Marfak A, Trouillas P, Allais DP, Champavier Y, Calliste CA, Duroux JL. 2002. Radiolysis of quercetin in methanol solution: observation of depside formation. J Agric Food Chem 50: 4827-4833. https://doi.org/10.1021/jf020165m
  23. Marfak A, Trouillas P, Allais DP, Calliste CA, Cook-Moreau J, Duroux JL. 2003. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol. Radiat Res 160: 355-365. https://doi.org/10.1667/RR3024
  24. Lee SS, Kim TH, Lee EM, Lee MH, Lee HY, Chung BY. 2014. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation. Food Chem 156: 312-318. https://doi.org/10.1016/j.foodchem.2014.01.099
  25. Kim TH, Kim JK, Ito H, Jo C. 2011. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett 21: 1512-1514. https://doi.org/10.1016/j.bmcl.2010.12.122
  26. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH. 2013. Radiolytic transformation of rotenone with potential anti-adipogenic activity. Bioorg Med Chem Lett 23: 1099-1103. https://doi.org/10.1016/j.bmcl.2012.12.003
  27. Vinson JA, Howard III TB. 1996. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem 7: 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
  28. Jo C, Yoon KY, Jang EJ, Kim TH. 2016. Degradation products of mangiferin by gamma irradiation with inhibitory effects on NO production. Biosci Biotechnol Biochem 80: 2022-2024. https://doi.org/10.1080/09168451.2016.1191335
  29. Jang DS, Kim JM, Lee YM, Kim YS, Kim JH, Kim JS. 2006. Puerariafuran, a new inhibitor of advanced glycation end products (AGEs) isolated from the roots of Pueraria lobata. Chem Pharm Bull 54: 1315-1317. https://doi.org/10.1248/cpb.54.1315
  30. Jang DS, Lee GY, Lee YM, Kim YS, Sun H, Kim DH, Kim JS. 2009. Flavan-3-ols having a gamma-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem Pharm Bull 57: 397-400. https://doi.org/10.1248/cpb.57.397
  31. Ferchichi L, Derbre S, Mahmood K, Toure K, Guilet D, Litaudon M, Awang K, Hadi AH, Le Ray AM, Richomme P. 2012. Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 78: 98-106. https://doi.org/10.1016/j.phytochem.2012.02.006