Effect of sinusoidal Taylor vortex flow on cooling crystallization of L-lysine

  • Nguyen, Anh-Tuan (Department of Chemical Engineering, Functional Crystallization Center, Kyung Hee University) ;
  • Kim, Woo-Sik (Department of Chemical Engineering, Functional Crystallization Center, Kyung Hee University)
  • Received : 2016.11.25
  • Accepted : 2017.03.03
  • Published : 2017.07.01


An elliptical Couette-Taylor (ECT) crystallizer with a unique sinusoidal Taylor vortex flow was developed to promote the recovery and size distribution of L-lysine crystals in cooling crystallization. When using the ECT crystallizer, the recovery was enhanced to a maximum of 100% with a mean residence time of only 15 min. When comparing the crystallization efficiency, the recovery and size distribution of the L-lysine crystals in the ECT crystallizer were over 33% and 50% higher, respectively, than those in the conventional MSMPR crystallizer and slightly higher than those in the circular Couette-Taylor (CT) crystallizer. This improved crystallization in the ECT crystallizer was explained in terms of the sinusoidal profile of the Taylor vortex intensity. Plus, since the nucleation and growth processes determine the recovery and crystal size distribution, the mean residence time, inner cylinder rotation speed, and feed concentration were all varied to investigate their influence on the crystallization efficiency.


Supported by : National Research Foundation of Korea (NRF)


  1. R. Davey and J. Garside, From Molecules to Crystallizers, Oxford University Press (2000).
  2. N. Anh-Tuan, J. M. Kim, S. M. Chang and W. S. Kim, Ind. Eng. Chem. Res., 49, 4865 (2010).
  3. K. Kataoka, N. Ohmura, M. Kouzu, Y. Simamura and M. Okubo, Chem. Eng. Sci., 50, 1409 (1995).
  4. E. Dluska, J. Wolinski and S. Wronski, Chem. Eng. Technol., 28, 1016 (2005).
  5. J.G. Sczechowski, C. A. Koval and R.D. Noble, Chem. Eng. Sci., 50, 3136 (1995).
  6. U.B. Holeschovsky and C. L. Cooney, AIChE J., 37, 1219 (1991).
  7. R. L. C. Giordano, R. C. Giordano and C. L. Cooney, Process Biochemistry, 35, 1093 (2000).
  8. S.H. Kang, S. G. Lee, W. M. Jung, M. C. Kim, W. S. Kim, C. K. Choi and R. S. Feigelson, J. Cryst. Growth, 254, 196 (2003).
  9. W. M. Jung, S. H. Kang, W. S. Kim and C. K. Choi, Chem. Eng. Sci., 55, 733 (2000).
  10. O. Richer, H. Hoffman and B. Kraushaar-Czarnetzki, Chem. Eng. Sci., 63, 3504 (2008).
  11. M.N. Noui-Mehidi, A. Salem and P. Legentilhomme, J. Legrand, Int. J. Heat and Fluid Flow., 20, 405 (1999).
  12. A.-T. Nguyen, T. Yu and W.-S. Kim, J. Crys. Grow. (2017), DOI:10.1016/j.jcrysgro.2016.10.020.
  13. V. Sinevic, R. Kuboi and A.W. Nienow, Chem. Eng. Sci., 41, 2915 (1986).
  14. K. Atsumi, T. Makino and K. Kato, Kagaku Kogaku Ronbunshu., 14, 16 (1988).
  15. S. Nakahara, Kagaku Kogaku Ronbunshu., 3, 435 (1977).
  16. W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering 6th, McGraw Hill, Boston (2001).
  17. K. Kikuchi, Y. Tadakuma, T. Sugawara and H. Ohashi, J. Chem. Eng. Japan, 20, 134 (1987).
  18. N. Anh-Tuan, Y. L. Joo and W. S. Kim, Cryt. Growth Des., 12, 2780 (2012).
  19. M. Kurotani and I. Hirasawa, J. Cryst. Growth, 310, 4576 (2008).