DOI QR코드

DOI QR Code

Gold functionalized-graphene oxide-reinforced acrylonitrile butadiene rubber nanocomposites for piezoresistive and piezoelectric applications

  • Mensah, Bismark (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kumar, Dinesh (Biomaterials Lab, Department of Bionano System Engineering, Chonbuk National University) ;
  • Lee, Gi-Bbeum (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Won, Joohye (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Gupta, Kailash Chandra (Polymer Research Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee) ;
  • Nah, Changwoon (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • Received : 2017.08.31
  • Accepted : 2017.10.17
  • Published : 2018.01.31

Abstract

Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrile-butadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (${\varepsilon}^{\prime}$) and electrical resistance on straining within a range of 10-70%. The decreasing trend in ${\varepsilon}^{\prime}$ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (${GF_{\varepsilon}}^{\prime}$) of ~0.5, and piezo-resistive gauge factor ($GF_R$) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.

Keywords

References

  1. Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J. Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55, 201 (2014). https://doi.org/10.1016/j.polymer.2013.11.032.
  2. Kang I, Khaleque MA, Yoo Y, Yoon PJ, Kim SY, Lim KT. Preparation and properties of ethylene propylene diene rubber/multi walled carbon nanotube composites for strain sensitive materials. Compos Part A Appl Sci Manuf, 42, 623 (2011). https://doi.org/10.1016/j. compositesa.2011.01.021.
  3. Akram M, Javed A, Rizvi TZ. Dielectric properties of industrial polymer composite materials. Turk J Phys, 29, 355 (2005).
  4. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, zur Loye HC. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials, 2, 1697 (2009). https://doi.org/10.3390/ma2041697.
  5. Ogura I. Low Dielectric Constant Epoxy Resins. In: Nalwa HS, ed. Handbook of Low and High Dielectric Constant Materials and Their Applications, Academic Press, San Diego, 213 (1999).
  6. Bai X, Wan C, Zhang Y, Zhai Y. Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon, 49, 1608 (2011). https://doi.org/10.1016/j.carbon. 2010.12.043.
  7. Yang B, Liu Z, Guo Z, Zhang W, Wan M, Qin X, Zhong H. In situ green synthesis of silver-graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl Surf Sci, 316, 22 (2014). https://doi.org/10.1016/j. apsusc.2014.07.084.
  8. Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces, 6, 2230 (2014). https://doi.org/10.1021/am405768m.
  9. Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta, 563, 22 (2013). https://doi.org/10.1016/j. tca.2013.04.010.
  10. Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang TY, Liu L. High performance graphene oxide based rubber composites. Sci Rep, 3, 2508 (2013). https://doi.org/10.1038/ srep02508.
  11. Young RJ, Kinloch IA, Gong L, Novoselov KS. The mechanics of graphene nanocomposites: a review. Compos Sci Technol, 72, 1459 (2012). https://doi.org/10.1016/j.compscitech.2012.05.005.
  12. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). https://doi.org/10.1039/B917103G.
  13. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ ma100572e.
  14. Ma X, Qu Q, Zhao Y, Luo Z, Zhao Y, Ng KW, Zhao Y. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J Mater Chem B, 1, 6495 (2013). https://doi.org/10.1039/C3TB21385D.
  15. Jo WK, Kang HJ. Titanium dioxide-graphene oxide composites with different ratios supported by Pyrex tube for photocatalysis of toxic aromatic vapors. Powder Technol, 250, 115 (2013). https://doi.org/10.1016/j.powtec.2013.10.017.
  16. Liu Y, Zhang D, Wang K, Liu Y, Shang Y. A novel strain sensor based on graphene composite films with layered structure. Compos Part A Appl Sci Manuf, 80, 95 (2016). https://doi.org/10.1016/j.compositesa.2015.10.010.
  17. Tadakaluru S, Thongsuwan W, Singjai P. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors, 14, 868 (2014). https://doi.org/10.3390/s140100868.
  18. Tung TT, Karunagaran R, Tran DNH, Gao B, Nag-Chowdhury S, Pillin I, Castro M, Feller JF, Losic D. Engineering of graphene/ epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. J Mater Chem C, 4, 3422 (2016). https://doi.org/10.1039/C6TC00607H.
  19. Boland CS, Khan U, Backes C, O'Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN. Sensitive, high-strain, high-rate bodily motion sensors based on graphene- rubber composites. ACS Nano, 8, 8819 (2014). https://doi.org/10.1021/nn503454h.
  20. Yin G, Hu N, Karube Y, Liu Y, Li Y, Fukunaga H. A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. J Compos Mater, 45, 1315 (2011). https://doi.org/10.1177/0021998310393296.
  21. Xu W, Allen MG. Fabrication of patterned carbon nanotube (CNT)/ elastomer bilayer material and its utilization as force sensors. In Proceedings of 2009 International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2009, Denver, CO, 2242 (2009). https://doi.org/10.1109/SENSOR.2009.5285594.
  22. Loh KJ, Lynch JP, Shim BS, Kotov NA. Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct, 19, 747 (2008). https://doi.org/10.1177/1045389X07079872.
  23. Luheng W, Tianhuai D, Peng W. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon, 47, 3151 (2009). https://doi.org/10.1016/j. carbon.2009.06.050.
  24. Wang L, Ma F, Shi Q, Liu H, Wang X. Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite. Sens Actuators A Phys, 165, 207 (2011). https://doi.org/10.1016/j. sna.2010.10.023.
  25. Mensah B, Kumar D, Lim DK, Kim SG, Jeong BH, Nah C. Preparation and properties of acrylonitrile-butadiene rubber-graphene nanocomposites. J Appl Polym Sci, 132, 42457 (2015). https://doi.org/10.1002/app.42457.
  26. Niidome T, Nakashima K, Takahashi H, Niidome Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun, (17), 1978 (2004). https://doi.org/10.1039/B406189F.
  27. Mensah B, Kim S, Arepalli S, Nah C. A study of graphene oxidereinforced rubber nanocomposite. J Appl Polym Sci, 131, 40640 (2014). https://doi.org/10.1002/app.40640.
  28. Flory PJ, Rehner J, Jr. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J Chem Phys, 11, 521 (1943). https://doi.org/10.1063/1.1723791.
  29. Bristow GM, Watson WF. Cohesive energy densities of polymers. Part 1. Cohesive energy densities of rubbers by swelling measurements. Trans Faraday Soc, 54, 1731 (1958). https://doi.org/10.1039/TF9585401731.
  30. Hernandez M, Bernal MM, Verdejo R, Ezquerra TA, Lopez- Manchado MA. Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol, 73, 40 (2012). https://doi.org/10.1016/j.compscitech.2012.08.012.
  31. Li C, Feng C, Peng Z, Gong W, Kong L. Ammonium-assisted green fabrication of graphene/natural rubber latex composite. Polym Compos, 34, 88 (2013). https://doi.org/10.1002/pc.22380.
  32. Zhang N, Qiu H, Liu Y, Wang W, Li Y, Wang X, Gao J. Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J Mater Chem, 21, 11080 (2011). https://doi.org/10.1039/C1JM12539G.
  33. Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L, Maaza M, Khenfouch M. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J Chem, 2013, 150536 (2013). https://doi.org/10.1155/2013/150536.
  34. Lai Q, Zhu S, Luo X, Zou M, Huang S. Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv, 2, 032146 (2012). https://doi.org/10.1063/1.4747817.
  35. Hareesh K, Williams JF, Dhole NA, Kodam KM, Bhoraskar VN, Dhole SD. Bio-green synthesis of Ag-GO, Au-GO and Ag-Au- GO nanocomposites using Azadirachta indica: its application in SERS and cell viability. Mater Res Express, 3, 075010 (2016). https://doi.org/10.1088/2053-1591/3/7/075010.
  36. Wang W, He D, Duan J, Wang S, Peng H, Wu H, Fu M, Wang Y, Zhang X. Simple synthesis method of reduced graphene oxide/gold nanoparticle and its application in surface-enhanced Raman scattering. Chem Phys Lett, 582, 119 (2013). https://doi.org/10.1016/j. cplett.2013.07.037.
  37. Yun YJ, Song KB. Preparation and characterization of graphene oxide encapsulated gold nanoparticles. J Nanosci Nanotechnol, 13, 7376 (2013). https://doi.org/10.1166/jnn.2013.7850.
  38. Kim TH, Lee KB, Choi JW. 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials, 34, 8660 (2013). https://doi.org/10.1016/j.biomaterials. 2013.07.101.
  39. Shanmugharaj AM, Bae JH, Lee KH, Noh WH, Lee SH, Ryu SH. Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol, 67, 1813 (2007). https://doi.org/10.1016/j.compscitech.2006.10.021.
  40. Gudarzi MM, Sharif F. Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polym Lett, 6, 1017 (2012). https://doi.org/10.3144/expresspolymlett.2012.107.
  41. Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test, 27, 841 (2008). https://doi.org/10.1016/j.polymertesting. 2008.06.007.
  42. Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci, 52, 56 (2011). https://doi.org/10.1016/j.clay.2011.01.029.
  43. Boonmahitthisud A, Chuayjuljit S. NR/XSBR nanocomposites with carbon black and carbon nanotube prepared by latex compounding. J Met Mater Miner, 22, 77 (2012).
  44. Yamaguchi K, Busfield JJC, Thomas AG. Electrical and mechanical behavior of filled elastomers. I. The effect of strain. J Polym Sci Part B Polym Phys, 41, 2079 (2003). https://doi.org/10.1002/ polb.10571.
  45. Bokobza L, Belin C. Effect of strain on the properties of a styrene- butadiene rubber filled with multiwall carbon nanotubes. J Appl Polym Sci, 105, 2054 (2007). https://doi.org/10.1002/app.26153.
  46. Sutton LE. Dielectric behavior and structure: dielectric constant and loss, dipole moment and molecular structure. J Am Chem Soc, 78, 507 (1956). https://doi.org/10.1021/ja01583a080.
  47. Tantis I, Psarras GC, Tasis D. Functionalized graphene-poly(vinyl alcohol) nanocomposites: physical and dielectric properties. Express Polym Lett, 6, 283 (2012). https://doi.org/10.3144/expresspolymlett. 2012.31.
  48. He F, Lau S, Chan HL, Fan J. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater, 21, 710 (2009). https://doi.org/10.1002/adma.200801758.
  49. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys, 142, 194703 (2015). https://doi.org/10.1063/1.4919877.
  50. Serghei A, Tress M, Sangoro JR, Kremer F. Electrode polarization and charge transport at solid interfaces. Phys Rev B, 80, 184301 (2009). https://doi.org/10.1103/PhysRevB.80.184301.
  51. Wang Z, Nelson JK, Hillborg H, Zhao S, Schadler LS. Nonlinear conductivity and dielectric response of graphene oxide filled silicone rubber nanocomposites. In Proceedings of 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, Canada, 40 (2012). https://doi.org/10.1109/CEIDP.2012.6378717.
  52. Dang TTN, Mahapatra SP, Sridhar V, Kim JK, Kim KJ, Kwak H. Dielectric properties of nanotube reinforced butyl elastomer composites. J Appl Polym Sci, 113, 1690 (2009). https://doi.org/10.1002/app.30166.
  53. Al-Hartomy OA, Al-Ghamdi AA, Al-Salamy F, Dishovsky N, Shtarkova R, Iliev V, El-Tantawy F. Dielectric and microwave properties of graphene nanoplatelets/carbon black filled natural rubber composites. Int J Mater Chem, 2, 116 (2012). https://doi.org/10.5923/j.ijmc.20120203.06.
  54. Tiwari SK, Choudhary RNP, Mahapatra SP. Relaxation behavior of chlorobutyl elastomer nanocomposites: effect of temperature, multiwalled carbon nanotube and frequency. J Polym Res, 20, 176 (2013). https://doi.org/10.1007/s10965-013-0176-7.
  55. McCrum NG, Read BE, Williams G. Anelastic and Dielectric Effects in Polymeric Solids, John Wiley & Sons, Hoboken, --- (1967).
  56. Hodge IM, Ingram MD, West AR. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem Interfacial Electrochem, 74, 125 (1976). https://doi.org/10.1016/ S0022-0728(76)80229-X.
  57. Tian F, Ohki Y. Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans Dielectr Electr Insul, 21, 929 (2014). https://doi.org/10.1109/TDEI.2014.6832233.
  58. Richert R, Wagner H. The dielectric modulus: relaxation versus retardation. Solid State Ionics, 105, 167 (1998). https://doi.org/10.1016/S0167-2738(97)00461-X.
  59. Amjadi M, Yoon YJ, Park I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology, 26, 375501 (2015). https://doi.org/10.1088/0957- 4484/26/37/375501.
  60. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36.