DOI QR코드

DOI QR Code

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Byun, Sang Chul (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Chung, Sungwook (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Seok (School of Chemical and Biomolecular Engineering, Pusan National University)
  • Received : 2017.11.15
  • Accepted : 2017.12.21
  • Published : 2018.01.31

Abstract

Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

Keywords

References

  1. Shrestha LK, Shrestha RG, Joshi S, Rajbhandari R, Shrestha N, Adhikari MP, Pradhananga RR, Ariga K. Nanoarchitectonics of nanoporous carbon materials from natural resource for supercapacitor application. J Inorg Organomet Polym Mater, 27, 48 (2017). https://doi.org/10.1007/s10904-017-0548-2.
  2. Kim Y, Kim S. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property. Bull Korean Chem Soc, 36, 665 (2015). https://doi.org/10.1002/bkcs.10129.
  3. Adhikari MP, Adhikari R, Shrestha RG, Rajendran R, Adhikari L, Bairi P, Pradhananga RR, Shrestha LK, Ariga K. Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance. Bull Japan Chem Soc Jpn, 88, 1108 (2015). https://doi.org/10.1246/bcsj.20150092.
  4. Miller JR, Outlaw RA, Holloway BC. Graphene electric double layer capacitor with ultra-high-power performance. Electrochim Acta, 56, 10443 (2011). https://doi.org/10.1016/j.electacta. 2011.05.122.
  5. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric doublelayer capacitor. J Am Chem Soc, 130, 2730 (2008). https://doi.org/10.1021/ja7106178.
  6. Wang J, Ran R, Sunarso J, Yin C, Zou H, Feng Y, Li X, Zheng X, Yao J. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. J Power Sources, 347, 259 (2017). https://doi.org/10.1016/j.jpowsour. 2017.02.072.
  7. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra- high energy density. Phys Chem Chem Phys, 13, 17615 (2011). https://doi.org/10.1039/C1CP21910C.
  8. Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. J Elecom, 13, 355 (2011). https://doi.org/10.1016/j.elecom.2011.01.023.
  9. Kim Y, Kim S. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites. Electrochim Acta, 163, 252 (2015). https://doi.org/10.1016/j.electacta.2015.02.103.
  10. Song C, Park SJ, Kim S. Effect of modification by polydopamine and polymeric carbon nitride on methanol oxidation ability of Pt catalysts-supported on reduced graphene oxide. J Electrochem Soc, 163, F668 (2016). https://doi.org/10.1149/2.0901607jes.
  11. Miller JR, Simon P. Electrochemical capacitors for energy management. Science, 321, 651 (2008). https://doi.org/10.1126/science.1158736.
  12. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). https://doi.org/10.1038/nmat2297.
  13. Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater, 22, E28 (2010). https://doi.org/10.1002/ adma.200903328.
  14. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett, 9, 1872 (2009). https://doi.org/10.1021/nl8038579.
  15. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? J Chem Rev, 104, 4245 (2004). https://doi.org/10.1021/cr020730k.
  16. Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci, 9, 729 (2016). https://doi.org/10.1039/C5EE03109E.
  17. Kim J, Kim S. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta, 119, 11 (2014). https://doi.org/10.1016/j.electacta.2013.11.187.
  18. Kim J, Kim S. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl Surf Sci, 295, 31 (2014). https://doi.org/10.1016/j.apsusc.2013.12.156.
  19. Meher SK, Rao GR. Ultralayered $Co_3O_4$ for high-performance supercapacitor applications. J Phys Chem C, 115, 15646 (2011). https://doi.org/10.1021/jp201200e.
  20. Lee JW, Ahn T, Kim JH, Ko JM, Kim JD. Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta, 56, 4849 (2011). https://doi.org/10.1016/j.electacta.2011.02.116.
  21. Wang D, Li Y, Wang Q, Wang T. Nanostructured $Fe_2O_3$-graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem, 16, 2095 (2012). https://doi.org/10.1007/s10008-011-1620-4.
  22. Yu G, Xie X, Pan L, Bao Z, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2, 213 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006.
  23. Patake VD, Lokhande CD, Joo OS. Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci, 255, 4192 (2009). https://doi.org/10.1016/j.apsusc. 2008.11.005.
  24. Patil UM, Salunkhe RR, Gurav KV, Lokhande CD. Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci, 255, 2603 (2008). https://doi.org/10.1016/j.apsusc.2008.07.192.
  25. Duan BR, Cao Q. Hierarchically porous $Co_3O_4$ film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochim Acta, 64, 154 (2012). https://doi.org/10.1016/j.electacta.2012.01.004.
  26. Li R, Ren X, Zhang F, Du C, Liu J. Synthesis of $Fe_3O_4$@$SnO_2$ core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun, 48, 5010 (2012). https://doi.org/10.1039/C2CC31786A.
  27. Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z. Electrochemical behaviors of graphene-ZnO and graphene-$SnO_2$ composite films for supercapacitors. Electrochim Acta, 55, 4170 (2010). https://doi.org/10.1016/j.electacta.2010.02.095.
  28. Sun X, Xie M, Wang G, Sun H, Cavanagh AS, Travis JJ, George SM, Lian J. Atomic Layer Deposition of $TiO_2$ on Graphene for Supercapacitors. J Electrochem Soc, 159, A364 (2012). https://doi.org/10.1149/2.025204jes.
  29. Chen X, Pomerantseva E, Banerjee P, Gregorczyk K, Ghodssi R, Rubloff G. Ozone-based atomic layer deposition of crystalline $V_2O_5$ films for high performance electrochemical energy storage. Chem Mater, 24, 1255 (2012). https://doi.org/10.1021/cm202901z.
  30. Kim J, Kim Y, Park SJ, Jung Y, Kim S. Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes. J Ind Eng Chem, 36, 139 (2016). https://doi.org/10.1016/j.jiec.2016.01.034.
  31. Kim Y, Cho ES, Park SJ, Kim S. One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior. J Ind Eng Chem, 33, 108 (2016). https://doi.org/10.1016/j.jiec.2015.09.023.
  32. Park S, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4$/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). https://doi.org/10.1016/j.electacta.2012.11.075.
  33. Chung S. Two-dimensional assembly of organically functionalized Ag nanoparticles at air-water interface. Appl Chem Eng, 28, 125 (2017). https://doi.org/10.14478/ace.2017.1001.
  34. Chung S, Leonard DN, Altoe V, Aloni S, De Yoreo JJ, Franzen S. The formation of Pd nanocrystals from Pd2(dba)3 microcrystals. Part Part Syst Charact, 30, 280 (2013). https://doi.org/10.1002/ ppsc.201200114.
  35. Chung S, Felts JR, Wang D, King WP, De Yoreo JJ. Temperature- dependence of ink transport during thermal dip-pen nanolithography. Appl Phys Lett, 99, 193101 (2011). https://doi.org/10.1063/1.3657777.
  36. Koshkakaryan G, Jiang P, Altoe V, Cao D, Klivansky LM, Zhang Y, Chung S, Katan A, Martin F, Salmeron M, Ma B, Aloni S, Liu Y. Multilayered nanofibers from stacks of single-molecular thick nanosheets of hexakis(alkoxy)triphenylenes. Chem Commun, 46, 8579 (2010). https://doi.org/10.1039/C0CC03942J.
  37. Chung S, Shin SH, Bertozzi CR, De Yoreo JJ. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proc Natl Acad Sci, 107, 16536 (2010). https://doi.org/10.1073/pnas.1008280107.
  38. Wang JG, Kang F, Wei B. Engineering of $MnO_2$-based nanocomposites for high-performance supercapacitors. Prog Mater Sci, 74, 51 (2015). https://doi.org/10.1016/j.pmatsci.2015.04.003.
  39. Wang JG, Yang Y, Huang ZH, Kang F. A high-performance asymmetric supercapacitor based on carbon and carbon-$MnO_2$ nanofiber electrodes. Carbon, 61, 190 (2013). https://doi.org/10.1016/j.carbon.2013.04.084.
  40. Wang JG, Yang Y, Huang ZH, Kang F. Effect of temperature on the pseudo-capacitive behavior of freestanding $MnO_2$@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources, 224, 86 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.075.
  41. Dorfler S, Felhosi I, Marek T, Thieme S, Althues H, Nyikos L, Kaskel S. High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum. J Power Sources, 227, 218 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.068.
  42. Iyyamperumal E, Wang S, Dai L. Vertically aligned BCN nanotubes with high capacitance. ACS Nano, 6, 5259 (2012). https://doi.org/10.1021/nn301044v.
  43. He Y, Chen W, Li X, Zhang Z, Fu J, Fu J, Zhao C, Xie E. freestanding three-dimensional graphene/$MnO_2$ composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano, 7, 174 (2013). https://doi.org/10.1021/nn304833s.
  44. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater, 22, E235 (2010). https://doi.org/10.1002/adma.200904349.
  45. Wang K, Gao S, Du Z, Yuan A, Lu W, Chen L. $MnO_2$-carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J Power Sources, 305, 30 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.064.
  46. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/ nn1006368.
  47. Sharma RK, Oh HS, Shel YG, Kim H. Carbon-supported, nanostructured, manganese oxide composite electrode for electrochemical supercapacitor. J Power Sources, 173, 1024 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.076.
  48. Asif M, Tan Y, Pan L, Rashad M, Li J, Fu X, Cui R. Synthesis of a highly efficient 3D graphene-CNT-$MnO_2$-PANI nanocomposite as a binder free electrode material for supercapacitors. Phys Chem Chem Phys, 18, 26854 (2016). https://doi.org/10.1039/ C6CP04996F.
  49. Saleh NB, Pfefferle LD, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol, 42, 7963 (2008). https://doi.org/10.1021/es801251c.
  50. Portet C, Taberna PL, Simon P, Flahaut E. Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte. J Power Sources, 139, 371 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.015.
  51. Chen S, Zhu J, Wu X, Han Q, Wang X. Graphene oxide-$MnO_2$ nanocomposites for supercapacitors. ACS Nano, 4, 2822 (2010). https://doi.org/10.1021/nn901311t.
  52. Kim BH, Kim JH, Kim JG, Im JS, Lee CW, Kim S. Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries. J Ind Eng Chem, 45, 99 (2017). https://doi.org/10.1016/j.jiec.2016.09.008.
  53. Cho ES, Bai BC, Im JS, Lee CW, Kim S. Pore size distribution control of pitch-based activated carbon for improvement of electrochemical property. J Ind Eng Chem, 35, 341 (2016). https://doi.org/10.1016/j.jiec.2016.01.012.
  54. Kim BH, Kim JH, Kim JG, Bae MJ, Im JS, Lee CW, Kim S. Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue. J Ind Eng Chem, 41, 1 (2016). https://doi.org/10.1016/j.jiec.2016.07.006.
  55. Kim K, Park SJ, Im JS, Lee CW, Jung Y, Kim S. Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes. Carbon Lett, 17, 70 (2016). https://doi.org/10.5714/CL.2016.17.1.070.
  56. Kim KY, Jung Y, Kim S. Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells. Carbon Lett, 19, 40 (2016). https://doi.org/10.5714/CL.2016.19.040.
  57. Kim HS, Jung Y, Kim S. Capacitance behaviors of conducting polymer- coated graphene nanosheets composite electrodes containing multi-walled carbon nanotubes as additives. Carbon Lett, 23, 63 (2017). https://doi.org/10.5714/CL.2017.23.063.
  58. Lee HI, Park SJ. Facile fabrication of electrospun polyacrylonitrile/ poly(vinylidene fluoride)-based carbon nanofibers for supercapacitor electrodes. Carbon Lett, 23, 79 (2017). https://doi.org/10.5714/ CL.2017.23.079.
  59. Kim JH, Rhee I, Jung YC, Ha S, Kim YA. Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load. Carbon Lett, 24, 90 (2017). https://doi.org/10.5714/CL.2017.24.090.
  60. Ling Z, Wang G, Dong Q, Qian B, Zhang M, Li C, Qiu J. An ionic liquid template approach to graphene-carbon xerogel composites for supercapacitors with enhanced performance. J Mater Chem A, 2, 14329 (2014). https://doi.org/10.1039/C4TA02223H.
  61. Li M, Cheng JP, Fang JH, Yang Y, Liu F, Zhang XB. NiAl-layered double hydroxide/Reduced graphene oxide composite: microwave-assisted synthesis and supercapacitive properties. Electrochim Acta, 134, 309 (2014). https://doi.org/10.1016/j.electacta. 2014.04.141.
  62. Wang Z, Zhang X, Wang J, Zou L, Liu Z, Hao Z. Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. J Colloid Interface Sci, 396, 251 (2013). https://doi.org/10.1016/j.jcis.2013.01.013.