DOI QR코드

DOI QR Code

Optimal Design Method for a Plasmonic Color Filter by Using Individual Phenomenon in a Plasmonic Hybrid Structure

복합 플라즈몬 구조에서의 개별 모드 동작을 이용한 플라즈모닉 컬러 필터 최적의 설계 방법

  • Lee, Yong Ho (School of Electronics Engineering, Kyungpook National University) ;
  • Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
  • 이용호 (경북대학교 IT대학 전자공학부) ;
  • 도윤선 (경북대학교 IT대학 전자공학부)
  • Received : 2018.10.08
  • Accepted : 2018.11.07
  • Published : 2018.12.25

Abstract

In this study we propose a hybrid color-filter design method in which a nanohole array and a nanodisk array are separated by nanopillars of the material AZ 1500. We propose a design method for an RGB color filter, using the tendency of transmitted light according to each design variable. Especially we analyzed the intensity distribution of the electric field in the cross section, and set the height of the nanopillars so that the local surface-plasmon resonances generated in the two different arrays do not affect each other. The optical characteristics of the optimized color filter are as follows: In the case of the red filter, the ratio of the wavelength band expressing red in the visible broadband is 55.01%, and the maximum transmittance is 41.53%. In the case of the green filter, the ratio of the wavelength band expressing green is 40.20%, and the maximum transmittance is 42.41%. In the case of the blue filter, the ratio of the wavelength band expressing blue is 32.78%, and the maximum transmittance is 30.27%. We expect to improve the characteristics of color filters integrated in industrial devices by this study.

본 연구에서는 나노 홀 배열과 나노 디스크 배열이 AZ 1500 나노 기둥에 의해 분리된 하이브리드 구조의 컬러 필터 설계방법을 제시한다. 우리는 각 설계 변수에 따른 투과광 특성 변화의 경향성을 이용하여 RGB 컬러 필터 설계 방법을 제시한다. 특히, 단면에서의 전기장의 세기 분포를 분석하여 두 배열에서 각각 발생하는 국소 표면 플라즈몬 공명이 서로에게 영향을 주지 않도록 AZ 1500 나노 기둥의 높이를 설정하였다. 최적화된 컬러 필터의 투과광 특성은 다음과 같다. Red 컬러 필터의 투과광 특성은 가시광 대역에서 Red를 표현하는 파장대역이 차지하는 비율이 55.01%, 투과도 최댓값이 41.53%이다. 그리고 Green컬러 필터의 경우, Green을 표현하는 파장대역의 비율이 40.20%, 투과도 최댓값은 42.41%이다. Blue 컬러 필터의 경우, Blue를 표현하는 파장 대역의 비율이 32.78%, 투과도 최댓값은 30.27%이다. 본 연구를 통해 산업용 장치에 집적되는 컬러 필터의 특성 향상을 이끌어 낼 수 있을 것으로 예상한다.

Keywords

KGHHBU_2018_v29n6_275_f0001.png 이미지

Fig. 2. Numerical calculation of light transmission characteristics according to design variables. (a) Spectral measurements when the height of the AZ 1500 nanopillars was changed from 110 nm to 170 nm in the nanostructure of T = 30 nm, P = 350 nm and D = 170 nm, (b) Spectral measurements when the period of the array is changed from 270 nm to 360 nm in the nanostructure of H = 120 nm, T = 30 nm and D = 140 nm, (c) Spectral measurements when the diameter of the nanodisk array and the diameter of the nanohole array are changed from 130 nm to 160 nm in the nanostructure of H = 120 nm, P = 300 nm and T = 35 nm, (d) Spectral measurements when the thickness of the aluminum on the glass substrate and the AZ 1500 nanopillars is changed from 35 nm to 50 nm in the nanostructure of H = 120 nm, P = 350 nm and D = 170 nm.

KGHHBU_2018_v29n6_275_f0002.png 이미지

Fig. 3. Calculated transmittance and electric field intensity on the x-z plane (at the center of the nanoholes): (a) Spectral measurements when the height of the AZ 1500 nanopillars was changed from 100 nm to 170 nm in the nanostructure of T = 30 nm, P = 350 nm and D = 170 nm; (b), (c), (d), (e), (f) and (g) represent the intensity of the electric field at the cross section calculated at the wavelength with the maximum transmittance in the spectrum for the hybrid nanostructure; (b) H = 100 nm, (c) H = 110 nm, (d) H = 120 nm, (e) H = 130 nm, (f) H = 150 nm, (g) H = 170 nm.

KGHHBU_2018_v29n6_275_f0003.png 이미지

Fig. 4. Transmission spectra of the plasmonic red color filter of hybrid structure. Each graph shows the transmittance according to the thickness of the deposited aluminum. The wavelength range of the color representing red is from 620 nm to 750 nm. Each spectrum in one graph corresponds to the same period and diameter of nanodisks and resist nanopillars; (a) P = 370 nm, (b) P = 380 nm, (c) P = 390 nm, (d) P = 400 nm.

KGHHBU_2018_v29n6_275_f0004.png 이미지

Fig. 5. Transmission spectra of the plasmonic green color filter of hybrid structure. Each graph shows the transmittance according to the thickness of the deposited aluminum. The wavelength range of the color representing green is from 495 nm to 570 nm. Each spectrum in one graph corresponds to the same period and diameter of nanodisks and resist nanopillars; (a) P = 270 nm, (b) P = 280 nm, (c) P = 290 nm, (d) P = 300 nm.

KGHHBU_2018_v29n6_275_f0005.png 이미지

Fig. 6. Transmission spectra of the plasmonic blue color filter of hybrid structure. Each graph shows the transmittance according to the thickness of the deposited aluminum. The wavelength range of the color representing Blue is from 450 nm to 495 nm. Each spectrum in one graph corresponds to the same period and diameter of nanodisks and resist nanopillars; (a) P = 180 nm, (b) P = 190 nm, (c) P = 200 nm, (d) P = 210 nm.

KGHHBU_2018_v29n6_275_f0006.png 이미지

Fig. 1. (a) A schematic diagram of a complementary plasmonic color filter consisting of an aluminum nanohole array (NHA) and a nanodisk array (NDA) spatially separated by an AZ 1500 resist nanopillar, (b) Design parameters of the nanostructure; the height (H) of the resist nanopillars, the period (P) of the arrangement, the diameter (D) of the nanodisks and the resist nanopillars, the thickness (T) of the deposited aluminum.

References

  1. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002). https://doi.org/10.1016/S0030-4018(02)01690-5
  2. U. Schroter and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B: Condens. Matter Mater. Phys. 58, 15419-15421 (1998). https://doi.org/10.1103/PhysRevB.58.15419
  3. A. Ono, J. I. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 1-4 (2005).
  4. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B: Condens. Matter Mater. Phys. 74, 1-7 (2006).
  5. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). https://doi.org/10.1038/nature05350
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 86, 1114-7 (1998).
  7. M. S. Lee and C. Huh, "Display device," U.S. Patent 753194B2 (2017).
  8. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607
  9. S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012). https://doi.org/10.1021/nl302110z
  10. A. Mahanipour and A. Mokhtari, "Optimization of plas monic color filters for CMOS image sensors by genetic algorithm," in Proc. 2nd Conference on Swarm Intelligence and Evolutionary Computation (Shahid Bahonar Univ., Iran, Mar. 2017), pp. 12-15.
  11. R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999). https://doi.org/10.1016/S0141-9382(99)00013-X
  12. T. F. Villesen, C. Uhrenfeldt, B. Johansen, and A. Nylandsted Larsen, "Self-assembled Al nanoparticles on Si and fused silica, and their application for Si solar cells," Nanotechnology 24 (2013).
  13. H. Ghaemi, T. Thio, D. Grupp, and T. Ebbesen, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B: Condens. Matter Mater. Phys. 58, 6779-6782 (1998). https://doi.org/10.1103/PhysRevB.58.6779
  14. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, and P. Fumagalli, "Optical and magnetic properties of hexagonal arrays of subwavelength," Nano Lett. 9, 1-6 (2009). https://doi.org/10.1021/nl801811t
  15. V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, "Aluminum plasmonics based highly transmissive polarizationindependent subtractive color filters exploiting a nanopatch array," Nano Lett. 14, 6672-6678 (2014). https://doi.org/10.1021/nl503353z
  16. S. Xiao and N. A. Mortensen, "Surface-plasmon-polaritoninduced suppressed transmission through ultrathin metal disk arrays," Opt. Lett. 36, p. 37 (2011). https://doi.org/10.1364/OL.36.000037
  17. B. Kang, J. Noh, J. Lee, and M. Yang, "Heterodyne interference lithography for one-step micro/nano multiscale structuring," Appl. Phys. Lett. 103, 1-6 (2013).
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  19. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). https://doi.org/10.1103/PhysRevLett.82.2590