DOI QR코드

DOI QR Code

Optimum Air-Gap Flux Distribution with Third Harmonic Rotor Flux Orientation Adjustment for Five-Phase Induction Motor

  • Kang, Min (College of Automation and Electrical Engineering, Zhejiang University of Science and Technology) ;
  • Yu, Wenjuan (Central China Branch of State Grid Corporation of China) ;
  • Wang, Zhengyu (Hunan CRRC Times Electric Vehicle Co. LTD.) ;
  • Kong, Wubin (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology) ;
  • Xiao, Ye (Hunan CRRC Times Electric Vehicle Co. LTD.)
  • Received : 2017.06.16
  • Accepted : 2017.10.20
  • Published : 2018.01.01

Abstract

This paper investigates optimum air-gap flux distribution with third harmonic rotor flux orientation adjustment for five-phase induction motor. The technique of objective is to generate a nearly rectangular air-gap flux, and it improves iron utilization under variation loading conditions. The proportional relations between third harmonic and fundamental plane currents is usually adopted in the conventional method. However, misalignment between fundamental and third harmonic component occurs with variation loading. The iron of stator teeth is saturated due to this misalignment. This problem is solved by third harmonic rotor flux orientation adjustment simultaneously, and direction and amplitude are changed with mechanical load variation. The proposed method ensures that the air-gap flux density is near rectangular for a maximum value from no load to rated load. It is confirmed that the proposed method guarantees complete both planes decoupling with third harmonic flux orientation adjustment. The effectiveness of the proposed technique is validated experimentally.

Keywords

E1EEFQ_2018_v13n1_315_f0001.png 이미지

Fig. 1. Topology of five-phase IM drive

E1EEFQ_2018_v13n1_315_f0002.png 이미지

Fig. 2. Sketch of stator winding distribution

E1EEFQ_2018_v13n1_315_f0003.png 이미지

Fig. 3. Vectors relation between the rotor flux and air-gapflux

E1EEFQ_2018_v13n1_315_f0004.png 이미지

Fig. 4. Waveforms of flux density distribution

E1EEFQ_2018_v13n1_315_f0005.png 이미지

Fig. 5. Rotor flux orientation for fundamental and thirdharmonic plane

E1EEFQ_2018_v13n1_315_f0006.png 이미지

Fig. 6. Air-gap flux distribution with different rotor fluxorientation

E1EEFQ_2018_v13n1_315_f0007.png 이미지

Fig. 7. Block diagram of vector control for five-phaseinduction motor with third harmonic rotor fluxorientation adjustment

E1EEFQ_2018_v13n1_315_f0008.png 이미지

Fig. 8. Simulation results for the proposal method underloading operation: (a) d1 current; (b) q1 current; (c)d3 current; (d) q3 current

E1EEFQ_2018_v13n1_315_f0009.png 이미지

Fig. 9. Simulation results for EMF distribution underloading operation: (a) the conventional method; (b)the proposal method

E1EEFQ_2018_v13n1_315_f0010.png 이미지

Fig. 10. The platform for the motor testing

E1EEFQ_2018_v13n1_315_f0011.png 이미지

Fig. 11. Experimental results of load operation forconventional method: (a) stator current locus onthe d-q frame; (b) speed and torque

E1EEFQ_2018_v13n1_315_f0012.png 이미지

Fig. 12. Experimental results for the conventional methodunder no-load: (a) stator current; (b) EMFdistribution

E1EEFQ_2018_v13n1_315_f0013.png 이미지

Fig. 13. Experimental results for the conventional methodunder rated load: (a) stator current; (b) EMFdistribution

E1EEFQ_2018_v13n1_315_f0014.png 이미지

Fig. 14. Experimental results of d-q current for theproposed method: (a) d1-q1 current; (b) d3-q3current; (c) rotor flux angle

E1EEFQ_2018_v13n1_315_f0015.png 이미지

Fig. 15. Experimental results for the proposed methodunder no-load: (a) stator current; (b) EMFdistribution.

E1EEFQ_2018_v13n1_315_f0016.png 이미지

Fig. 16. Experimental results for the proposed methodunder rated load: (a) stator current; (b) EMFdistribution

Table 1. Main dimensions of five-phase IM

E1EEFQ_2018_v13n1_315_t0001.png 이미지

Table 2. Parameters of five-phase IM

E1EEFQ_2018_v13n1_315_t0002.png 이미지

References

  1. E. Levi, "Multiphase electric machines for variablespeed application," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893-1909, May 2008. https://doi.org/10.1109/TIE.2008.918488
  2. E. Levi, R. Bojoi, F. Profumo, H. A. Toliyat, and S. Williamson, "Multiphase IM drives - A technology status review," IET Elect. Power Appl., vol. 1, no. 4, pp. 489-516, Jul. 2007. https://doi.org/10.1049/iet-epa:20060342
  3. R. Bojoi, F. Profumo, and A. Tenconi, "Dual-three phase IM drives-a technology status review," IET Electr. Power Appl., vol. 126, no. 4, pp. 420-429, 2006.
  4. H. A. Toliyat, L. Y. Xu, and T. A. Lipo, "A five-phase reluctance motor with high specific torque," IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 659-667, May/ Jun. 1992. https://doi.org/10.1109/28.137454
  5. H. A. Toliyat, T. A. Lipo, and J. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications. II. Motor design and performance," IEEE Trans. Energy Convers., vol. 6, no. 4, pp. 684-692, Dec. 1991. https://doi.org/10.1109/60.103642
  6. D. Suman and L. Parse, "Fault-tolerant control of fivephase permanent-magnet motors with trapezoidal back EMF," IEEE Trans. Ind. Electron., vol. 58, no.2, pp. 476-485, Feb. 2011. https://doi.org/10.1109/TIE.2010.2045322
  7. A. Mohammadpour, S. Sadeghi, and L. Parsa, "A generalized fault-tolerant control strategy for fivephase PM motor drives considering star, pentagon, pentacle connections of stator windings," IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 63-75, Jan. 2014. https://doi.org/10.1109/TIE.2013.2247011
  8. H. Guzman, M. J. Duran, F. Barrero, B. Bogado, and S. Toral, "Speed control of five-phase IMs with integrated open-phase fault operation using modelbased predictive current control techniques," IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4474-4484, Aug.2013. https://doi.org/10.1109/TIE.2013.2289882
  9. H. Guzman, F. Barrero, and M. J. Duran, "IGBTgating failure effect on a fault-tolerant predictive current-controlled five-phase induction motor drive," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 15-20, Jan. 2015. https://doi.org/10.1109/TIE.2014.2331019
  10. A. Mohammadpour and L. Parse, "Global faulttolerant control technique for multiphase permanentmagnet machines," IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 178-186, Jan./ Feb. 2015.
  11. H. S. Che, E. Levi, M. Jones, W. Hew, and N. Abd. Rahim, "Current control methods for an asymmetrical six-phase IM drive," IEEE Trans. Ind. Electron., vol. 29, no. 1, pp. 407-417, Jan.2014.
  12. A. G. Yepes, J. Malvar, A. Vidal, O. Lopez, and J. Doval-Gandoy, "Current harmonics compensation based on multiresonant control in synchronous frames for symmetrical n-phase machines," IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2708-2720, May. 2015. https://doi.org/10.1109/TIE.2014.2365155
  13. L. Parsa, and H. A. Toliyat, "Five-phase permanentmagnet motor drives," IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 30-37, Jan./Feb. 2005. https://doi.org/10.1109/TIA.2004.841021
  14. H. Xu, H. A. Toliyat, and L. J. Petersen, "Five-phase IM drives with DSP-based control system," IEEE Trans. Power Electron., vol. 17, no. 4, pp. 524-533, Jul. 2002. https://doi.org/10.1109/TPEL.2002.800983
  15. O. Dordevic, M. Jones, and E. Levi "Analytical formulas for phase voltage RMS square and THD in PWM multiphase system," IEEE Trans. Ind. Electron., vol. 30, no. 8, pp. 1645-1656, March. 2015.
  16. N. Bode, M. Jones, and E. Levi, "A space vector PWM with common-mode voltage elimination for open-end winding five-phase drives with a single DC supply," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2197-2207, May. 2014. https://doi.org/10.1109/TIE.2013.2272273
  17. N. Bodo, E. Levi, and M. Jones, "Investigation of carrier-based PWM techniques for a five-phase openend winding drive topology," IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 2054-2065, May. 2013. https://doi.org/10.1109/TIE.2012.2196013
  18. G. Carrasco and C. A. Silva, "Space vector PWM method for five-phase two-level VSI with minimum harmonic injection in the over-modulation region," IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 2042- 2205, May. 2013. https://doi.org/10.1109/TIE.2012.2201434
  19. J. Wang, R. Qu, and L. Zhou, "Dual-rotor multiphase permanent magnet machine with harmonic injection to enhance torque density," IEEE Trans. Appl. Supercond., vol. 22, no. 3, pp. 5202204, Jun. 2012. https://doi.org/10.1109/TASC.2011.2179399
  20. H. Xu, H. A.Toliyat, and L. J. Petersen, "Rotor field oriented control of five-phase IM with the combined fundamental and third harmonic currents," in Proc. IEEE APEC, Anaheim, CA, 2001, pp. 392-398.
  21. M. J. Duran, F. Salas, and M. R. Arahal, "Bifurcation analysis of five-phase IM drives with third harmonic injection," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2006-2014, May. 2008. https://doi.org/10.1109/TIE.2008.918470
  22. C. C. Scharlau, L. F. A. Pereira, L. A. Pereira, and S. Haffner, "Performance of a five-phase induction machine with optimized air gap field under open loop V/f control," IEEE Trans. Energy Convers., vol. 23, no. 4, pp. 1046-1056, Dec. 2008. https://doi.org/10.1109/TEC.2008.2001437
  23. L. A. Pereira, C. C. Scharlau, L. F. Pereira, and J. F. Haffner, "General model of a five-phase induction machine allowing for harmonics in the air gap field," IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 891- 899, Dec. 2006. https://doi.org/10.1109/TEC.2005.858090
  24. R. O. C. Lyra, and T. A. Lipo, "Torque density improvement in a six-phase IM with third harmonic current injection," IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1351-1360, Sep./ Oct. 2002. https://doi.org/10.1109/TIA.2002.802938
  25. A. Yong-Le, M. J. Kamper, and A. D. Roux, "Novel direct flux and direct torque control of six-phase induction machine with nearly square air-gap flux density," IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1534-1543, Nov./ Dec. 2007. https://doi.org/10.1109/TIA.2007.908157
  26. A. Abdel-Khalik, M. Masoud, and W. Barry, "Elevenphase induction machine: Steady-state analysis and performance evaluation with harmonic injection," IET Elect. Power Appl., vol. 4, no. 8, pp. 670-685, Sep. 2010. https://doi.org/10.1049/iet-epa.2009.0204
  27. A. S. Abdel-Khalik, M. I. Masoud, and B. W. Williams, "Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithms," IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 501-512, Jun. 2011. https://doi.org/10.1109/TEC.2010.2093139
  28. A. S. Abdel-Khalik, M. I. Masoud, S. Ahmed, and A. M. Massoud, "Effect of current harmonic injection on constant rotor volume multiphase induction machine stators: A comparative study," IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2002-2013, Nov./Dec. 2012. https://doi.org/10.1109/TIA.2012.2226191
  29. M. Mengoni, L. Zarri, A. Tani, L. Parsa, G. Serra, and D. Casadei, "High-torque-density control of multiphase induction motor drives operating over a wide speed range," IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 814-825, Feb. 2015. https://doi.org/10.1109/TIE.2014.2334662
  30. L. Zheng, J. E. Fletcher, B. W. Williams, and X. He, "Dual-plane vector control of a five-phase induction machine for an improved flux pattern," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp.1996-2005, May. 2008. https://doi.org/10.1109/TIE.2008.918464
  31. A. S. Abdel-Khalik, M. I. Masoud, and B. W. Williams, "Improved flux pattern with harmonic injection for multiphase induction machines," IEEE Trans. Ind. Electron., vol. 27, no. 3, pp. 1563-1578, Mar. 2012.