DOI QR코드

DOI QR Code

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Sin Yong (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Pahk, Heui Jae (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2017.05.11
  • Accepted : 2017.11.29
  • Published : 2018.02.25

Abstract

This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

Keywords

KGHHD@_2018_v2n1_69_f0001.png 이미지

FIG. 1. Image of 20 μm standard grid sample in 20X, 50X magnification. (a) Image in 20X. (b) Image in 50X.

KGHHD@_2018_v2n1_69_f0002.png 이미지

FIG. 2. Intensity profile of standard grid sample’s edge in 20X, 50X magnification.

KGHHD@_2018_v2n1_69_f0003.png 이미지

FIG. 3. Intensity distribution of 50X magnified image in three dimensions.

KGHHD@_2018_v2n1_69_f0004.png 이미지

FIG. 4. Intensity and derivative of intensity along the edge normal direction of the standard grid sample in 50X magnification.

KGHHD@_2018_v2n1_69_f0005.png 이미지

FIG. 5. Sigmoid function when m = -0.2, n = 10, K = 200, D = 25.

KGHHD@_2018_v2n1_69_f0006.png 이미지

FIG. 6. 2D sigmoid function for line geometry when the geometry function is . (a) Top view of the function. (b) Isometric view of the function.

KGHHD@_2018_v2n1_69_f0007.png 이미지

FIG. 7. 2D sigmoid function for circle geometry when the geometry function is . (a) Top view of the function. (b) Isometric view of the function

KGHHD@_2018_v2n1_69_f0008.png 이미지

FIG. 8. 2D sigmoid function for ellipse geometry when (a) Top view of the function. (b) Isometric view of the function.

KGHHD@_2018_v2n1_69_f0009.png 이미지

FIG. 9. General optical microscope system using the Piezo Transducer (PZT).

KGHHD@_2018_v2n1_69_f0010.png 이미지

FIG. 10. Indium Tin Oxide (ITO), Half-tone photoresist (HT-PR) and hole pattern images. (a) ITO. (b) HT-PR. (c) Hole A. (d) Hole B.

KGHHD@_2018_v2n1_69_f0011.png 이미지

FIG. 11. Fitting results for line (ITO and HT-PR edge) and circle (Hole A and Hole B edge) pattern. (a) Original intensity of line image. (b) Fitting intensity of line image. (c) Original intensity of circle image. (d) Fitting intensity of circle image.

TABLE 1. Specifications of the measurement system

KGHHD@_2018_v2n1_69_t0001.png 이미지

TABLE 2. CD measurement results from LoG mask sub-pixel method and sigmoid surface fitting method. (a) Measurement results of line width (ITO, HT-PR). (b) Measurement results of circle diameter (Hole A, B).(a) Line width (unit: μm)

KGHHD@_2018_v2n1_69_t0002.png 이미지

TABLE 2. CD measurement results from LoG mask sub-pixel method and sigmoid surface fitting method. (a) Measurement results of line width (ITO, HT-PR). (b) Measurement results of circle diameter (Hole A, B) (Continue).(b) Circle diameter (unit: μm)

KGHHD@_2018_v2n1_69_t0003.png 이미지

References

  1. S.-H. Park, J.-H. Lee, and H. J. Pahk, "In-line critical dimension measurement system development of LCD pattern proposed by newly developed edge detection algorithm," J. Opt. Soc. Korea 17(5), 392-398 (2013). https://doi.org/10.3807/JOSK.2013.17.5.392
  2. N.-T. Doan, J. H. Moon, T. W. Kim, H. J. Pahk, "A fast image enhancement technique using a new scanning path for critical dimension measurement of glass panels," Int. J. Precis. Eng. Manuf. 13, 2109-2114 (2012). https://doi.org/10.1007/s12541-012-0279-9
  3. N. Xu and Y.-T. Kim, "An image sharpening algorithm for high magnification image zooming," In Consumer Electronics(ICCE) (2010 Digest of Technical Papers International Conference on. IEEE), pp. 27-28.
  4. A. J. Tabatabai and O. R. Mitchell, "Edge location to subpixel values in digital imagery," IEEE Trans. Pattern Anal. Mach. Intell. 2, 188-201 (1984).
  5. Q. Sun, Y. Hou, Q. Tan, C. Li, and M. Liu, "A robust edge detection method with sub-pixel accuracy," Optik - International Journal for Light and Electron Optics 125(14), 3449-3453 (2014). https://doi.org/10.1016/j.ijleo.2014.02.001
  6. J. Ye, G. Fu, and U. P. Poudel, "High-accuracy edge detection with blurred edge model," Image Vis. Comput. 23(5), 453-467 (2005). https://doi.org/10.1016/j.imavis.2004.07.007
  7. M. Hagara and P. Kulla, "Edge detection with sub-pixel accuracy based on approximation of edge with Erf function," Radioengineering 20(2), 516-524 (2011).
  8. G.-S. Xu, "Sub-pixel edge detection based on curve fitting," In Information and Computing Science (2009. ICIC'09. Second International Conference on. IEEE), pp. 373-375.
  9. I. Sobel, "Neighborhood coding of binary images for fast contour following and general binary array processing," Comput. graphics image process. 8(1), 127-135 (1978). https://doi.org/10.1016/S0146-664X(78)80020-3
  10. A. Huertas and G. Medioni, "Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks," IEEE Trans. Pattern Anal. Mach. Intell. 5, 651-664 (1986).
  11. J. Canny, "A computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell. 6, 679-698 (1986).
  12. T. T. E. Yeo, S. H. Ong, and R. Sinniah, "Autofocusing for tissue microscopy," Image Vis. Comput 11(10), 629-639 (1993). https://doi.org/10.1016/0262-8856(93)90059-P
  13. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42(16), 3038-3046 (2003). https://doi.org/10.1364/AO.42.003038
  14. S. H. Fox, R. M. Silver, E. Kornegay, and M. Dagenais, "Focus and edge detection algorithms and their relevance to the development of an optical overlay calibration standard," In Microlithography'99 (International Society for Optics and Photonics, 1999), pp. 95-106.
  15. J.-H. Ahn, J. Ko, I. Y. Lee, and S. H. Kim, "A fast continuous auto focus algorithm using the state transition model," Pac. Sci. Rev. 13, 125-130 (2011).
  16. R. L. Plackett, "Karl Pearson and the Chi-squared test," Int. Stat. Rev. 51, 59-72 (1983). https://doi.org/10.2307/1402731