DOI QR코드

DOI QR Code

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy

중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용

  • Heo, June Seok (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Kim, Jinkwan (Department of Biomedical Laboratory Science, College of Health Science, Jungwon University)
  • 허준석 (고려대학교 대학원 의생명융합과학과) ;
  • 김진관 (중원대학교 의료보건대학 임상병리학과)
  • Received : 2018.09.04
  • Accepted : 2018.10.01
  • Published : 2018.12.31

Abstract

Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

중간엽줄기세포는 항염증능, 면역조절능 뿐만 아니라 다계통으로의 분화능 때문에 난치성 환자 치료를 위한 매력적인 대안적 치료방법으로 알려져 왔다. 지금까지 중간엽줄기세포의 이식 치료법은 면역질환, 심혈관질환, 암, 간질환 및 뇌졸중을 비롯한 다양한 질병의 전임상 및 임상적용에 긍정적인 결과를 가져왔다. 여러 연구들에 의하면, 중간엽줄기세포를 이용한 치료는 손상된 세포나 조직에 중간엽줄기세포가 이동하여 직접 세포를 대체하거나 분화시키는 작용이 아니라 중간엽줄기세포에서 분비하는 여러 인자들 즉, 주변분비 효과(paracrine effect)에 의한 것으로 확인되고 있다. 최근에 중간엽줄기세포 유래 엑소좀은 핵산, 단백질, 지질 등을 손상된 세포나 조직의 국소 미세환경으로 전달함으로써 세포간 상호작용을 통해 조직재생을 중재할 수 있는 중요한 역할을 하는 것으로 알려졌다. 엑소좀의 이용은 세포이식으로부터 발생할 수 있는 종양형성과 같은 다양한 위험성을 피할 수 있으므로 줄기세포 기반 치료 적용에 유용성이 매우 높다. 이러한 이유에서 중간엽줄기세포 유래 엑소좀은 재생의학 및 조직공학에서 안전하고 효율적인 치료적 도구(tool)가 될 수 있다. 여기에서 우리는 치료제로서의 중간엽줄기세포 유래 엑소좀의 정의와 역할에 대한 최신 지견과 함께 포괄적인 이해를 제공하고자 한다.

Keywords

References

  1. Heo JS. Chondrogenic differentiation of human mesenchymal stem cells on a patterned polymer surface. Korean J Clin Lab Sci. 2015;47:117-124. https://doi.org/10.15324/kjcls.2015.47.3.117
  2. Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci. 2016;23:76. https://doi.org/10.1186/s12929-016-0289-5
  3. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, et al. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol. 2012;72:32-40. https://doi.org/10.1002/ana.23612
  4. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118:95-107. https://doi.org/10.1161/CIRCRESAHA.115.305373
  5. Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res. 2009;104:398-402. https://doi.org/10.1161/CIRCRESAHA.108.187724
  6. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142-4157. https://doi.org/10.3390/ijms15034142
  7. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:970-973. https://doi.org/10.1038/leu.2014.41
  8. Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23:1233-1244. https://doi.org/10.1089/scd.2013.0479
  9. Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cells Res Ther. 2018;9:187. https://doi.org/10.1186/s13287-018-0939-5
  10. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381-390.
  11. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396-2402. https://doi.org/10.1182/blood.V98.8.2396
  12. In't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Benzooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88:845-852.
  13. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13:69-80. https://doi.org/10.1016/8756-3282(92)90363-2
  14. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:321-334. https://doi.org/10.1016/j.bbmt.2005.01.005
  15. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000;9:841-848. https://doi.org/10.1089/152581600750062264
  16. Subramanian K, Geraerts M, Pauwelyn KA, Park Y, Owens DJ, Muijtjens M, et al. Isolation procedure and characterization of multipotent adult progenitor cells from rat bone marrow. Methods Mol Biol. 2010;636:55-78.
  17. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105:4120-4126. https://doi.org/10.1182/blood-2004-02-0586
  18. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160-170. https://doi.org/10.1038/sj.leu.2402763
  19. Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood. 2000;96:3637-3643.
  20. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan Al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16:557-564.
  21. Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5:19. https://doi.org/10.1186/1756-8722-5-19
  22. Jung J, Choi JH, Lee Y, Park JW, Oh IH, Hwang SG, et al. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4-injured rat liver model via increased autophagic mechanism. Stem Cells. 2013;31:1584-1596. https://doi.org/10.1002/stem.1396
  23. Jeong H, Yim HW, Park HJ, Cho Y, Hong H, Kim NJ, et al. Mesenchymal stem cell therapy for ischemic heart disease: systematic review and meta-analysis. Int J Stem Cells. 2018;11:1-12. https://doi.org/10.15283/ijsc17061
  24. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329-339. https://doi.org/10.1083/jcb.97.2.329
  25. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:22.
  26. Kahlert C, Melo SA, Protopopoy A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869-3875. https://doi.org/10.1074/jbc.C113.532267
  27. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172:923-935. https://doi.org/10.1083/jcb.200508014
  28. Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011,6:481-492. https://doi.org/10.2217/rme.11.35
  29. Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: a new therapeutic option in regenerative medicine. J Cell Biochem. 2018;119:8048-8073. https://doi.org/10.1002/jcb.26726.
  30. Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, The BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65:336-341. https://doi.org/10.1016/j.addr.2012.07.001
  31. Dioufa N, Clark AM, Ma B, Beckwitt CH, Wells A. Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Mol Cancer. 2017;16:172. https://doi.org/10.1186/s12943-017-0740-6
  32. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77:370-376. https://doi.org/10.1016/j.mvr.2009.02.001
  33. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110:1362-1369. https://doi.org/10.1182/blood-2006-12-063412
  34. Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997-5000. https://doi.org/10.1002/pmic.200900351
  35. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38:215-224. https://doi.org/10.1093/nar/gkp857
  36. Feng Y, Huang W, Wani M, Yu X, Asharf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9:e88685. https://doi.org/10.1371/journal.pone.0088685
  37. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR- 146b inhibit glioma growth. Cancer Lett. 2013;335:201-204. https://doi.org/10.1016/j.canlet.2013.02.019
  38. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737-2746. https://doi.org/10.1002/stem.1409
  39. Amarnath S, Foley JE, Farthing DE, Gress RE, Laurence A, Eckhaus MA, et al. Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells. 2015;33:1200-1212. https://doi.org/10.1002/stem.1934
  40. Shigemoto-Kuroda T, Oh JY, Kim DK, Jeong HJ, Park SY, Lee HJ, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Reports. 2017;8:1214-1225. https://doi.org/10.1016/j.stemcr.2017.04.008
  41. Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol. 2014;5:518.
  42. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, et al. Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep. 2017;7:4323. https://doi.org/10.1038/s41598-017-04559-y
  43. Cosenza S, Toupet K, Maumus M, Luz-crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8:1399-1410. https://doi.org/10.7150/thno.21072
  44. Shao L, Zhang Y, Lan B, Wang J, Zhang Z, Zhang L, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.
  45. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med. 2014;92:387-397. https://doi.org/10.1007/s00109-013-1110-5
  46. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37:2415-2424. https://doi.org/10.1159/000438594
  47. Feng Y, Huang W, Wani M, Yu X, Asharf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9:e88685. https://doi.org/10.1371/journal.pone.0088685
  48. Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc. 2016;5:e002856.
  49. Wang Y, Wang S, Wu J, Jiang Y, Zhang H, Li S, et al. Hepatitis E virus infection in acute non-traumatic neurophathy: a large prospective case-control study in China. EBioMedicine. 2018;36:122-130. https://doi.org/10.1016/j.ebiom.2018.08.053.
  50. Fiore EJ, Mazzolini G, Aquino JB. Mesenchymal stem/stromal cells in liver fibrosis: recent findings, old/new caveats and future perspectives. Stem Cell Rev. 2015;11:586-597. https://doi.org/10.1007/s12015-015-9585-9
  51. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5:76. https://doi.org/10.1186/scrt465
  52. Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang CC, et al. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells Int. 2015;2015:853506.
  53. Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-medicated hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135. https://doi.org/10.1038/srep14135

Cited by

  1. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles vol.18, pp.1, 2020, https://doi.org/10.1186/s12951-020-00739-7
  2. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy vol.11, pp.1, 2020, https://doi.org/10.1186/s13287-019-1548-7