DOI QR코드

DOI QR Code

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Hong, Sanghyun (Department of Animal Resources Science, Dankook University) ;
  • Kim, You-Tae (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ;
  • Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ;
  • Kim, Hyeun Bum (Department of Animal Resources Science, Dankook University) ;
  • Lee, Ju-Hoon (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2017.10.17
  • Accepted : 2017.11.15
  • Published : 2018.02.28

Abstract

Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.

Keywords

References

  1. Cho SH, Cao J, Ren PJ, Earle DE. 2001. Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep. 20: 1-7. https://doi.org/10.1007/s002990000278
  2. Poonguzhali S, Madhaiyan M, Sa T. 2006. Cultivationdependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180.
  3. Hong C P, Kwon S-J, Kim J S, Y ang T-J, Park B-S, Lim YP. 2008. Progress in understanding and sequencing the genome of Brassicarapa. Int. J. Plant Genom. 2008: 9.
  4. Hanif R, Iqbal Z, Iqbal M, Hanif S, Rasheed M. 2006. Use of vegetables as nutritional food: role in human health. J. Agric. Biol. Sci. 1: 18-20.
  5. Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, et al. 2013. Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR Surveill. Summ. 62: 1-34.
  6. Lynch MF, Tauxe RV, Hedberg CW. 2009. The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol. Infect. 137: 307-315. https://doi.org/10.1017/S0950268808001969
  7. Centers for Disease Control and Prevention. 2006. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach -United States, September 2006. MMWR Morb. Mortal. Wkly. Rep. 55: 1045-1046.
  8. Slayton RB, Turabelidze G, Bennett SD, Schwensohn CA, Yaffee AQ, Khan F, et al. 2013. Outbreak of Shiga toxinproducing Escherichia coli (STEC) O157:H7 associated with romaine lettuce consumption, 2011. PLoS One 8: e55300. https://doi.org/10.1371/journal.pone.0055300
  9. Masuda K, Yamamoto S, Kubota K, Kurazono H, Makino S-I, Kasuga F, et al. 2015. Evaluation of the dynamics of microbiological quality in lightly pickled napa cabbages during manufacture. J. Food Saf. 35: 458-465. https://doi.org/10.1111/jfs.12195
  10. Chen J, Zhang L, Paoli GC, Shi C, Tu SI, Shi X. 2010. A realtime PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137: 168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
  11. Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444. https://doi.org/10.1128/AEM.70.12.7436-7444.2004
  12. Kim M, Lee K-H, Yoon S-W, Kim B-S, C hun J, Yi H. 2013. Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform. 11: 102-113. https://doi.org/10.5808/GI.2013.11.3.102
  13. Ercolini D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79: 3148-3155. https://doi.org/10.1128/AEM.00256-13
  14. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90. https://doi.org/10.1038/nature11237
  15. Metzker ML. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11: 31-46. https://doi.org/10.1038/nrg2626
  16. Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-2764. https://doi.org/10.1128/JCM.01228-07
  17. Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  18. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12: 2885-2893.
  19. Asakura H, Tachibana M, Taguchi M, Hiroi T, Kurazono H, Makino S-I, et al. 2016. Seasonal and growth-dependent dynamics of bacterial community in radish sprouts. J. Food Saf. 36: 392-401. https://doi.org/10.1111/jfs.12256
  20. Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8: e59310. https://doi.org/10.1371/journal.pone.0059310
  21. Holden N, Pritchard L, Toth I. 2009. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 33: 689-703. https://doi.org/10.1111/j.1574-6976.2008.00153.x
  22. Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, et al. 2012. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ. Microbiol. 14: 2058-2070. https://doi.org/10.1111/j.1462-2920.2011.02671.x
  23. Tyler HL, Triplett EW. 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 46: 53-73. https://doi.org/10.1146/annurev.phyto.011708.103102
  24. Mikesell P, Ivins BE, Ristroph JD, Dreier TM. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39: 371-376.
  25. Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142.
  26. Felske A, Engelen B, Nubel U, Backhaus H. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167.
  27. Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. https://doi.org/10.4014/jmb.1403.03032
  28. Hanshew AS, Mason CJ, Raffa KF, Currie CR. 2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95: 149-155. https://doi.org/10.1016/j.mimet.2013.08.007
  29. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.
  30. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.
  32. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  33. Cole J R, Chai B, F arris RJ, W ang Q, K ulam SA, M cGarrell DM, et al. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
  34. Jackson EF, Echlin HL, Jackson CR. 2006. Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol. Ecol. 58: 236-246. https://doi.org/10.1111/j.1574-6941.2006.00152.x
  35. Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, et al. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl. Environ. Microbiol. 78: 6187-6193. https://doi.org/10.1128/AEM.00888-12
  36. Penuelas J, Rico L, Ogaya R, Jump A, Terradas J. 2012. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14: 565-575. https://doi.org/10.1111/j.1438-8677.2011.00532.x
  37. Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biol. 14: 10.1186.
  38. Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA. 2011. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J. Appl. Microbiol. 110: 1203-1214. https://doi.org/10.1111/j.1365-2672.2011.04969.x
  39. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6: 1812-1822. https://doi.org/10.1038/ismej.2012.32
  40. Yim W-J, Poonguzhali S, Madhaiyan M, Palaniappan P, Siddikee MA, Sa T. 2009. Characterization of plant-growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions. J. Microbiol. 47: 147-155. https://doi.org/10.1007/s12275-008-0201-4
  41. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. 1994. New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov. and Empedobacter nom. rev. Int. J. Syst. Evol. Microbiol. 44: 827-831.
  42. Bloch KC, Nadarajah R, Jacobs R. 1997. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine 76: 30-41. https://doi.org/10.1097/00005792-199701000-00003
  43. Gallego V, Garcia MT, Ventosa A. 2006. Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int. J. Syst. Evol. Microbiol. 56: 1589-1592. https://doi.org/10.1099/ijs.0.64264-0
  44. Jackson CR, Randolph KC, Osborn SL, Tyler HL. 2013. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 13: 1-12. https://doi.org/10.1186/1471-2180-13-1
  45. Hoque SN, Graham J, Kaufmann ME, Tabaqchali S. 2001. Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. J. Hosp. Infect. 47: 188-192. https://doi.org/10.1053/jhin.2000.0908
  46. Liang J, Liu J, Zhang X-H. 2015. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int. J. Syst. Evol. Microbiol. 65: 1127-1132. https://doi.org/10.1099/ijs.0.000067
  47. Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77: 3202-3210. https://doi.org/10.1128/AEM.00133-11
  48. Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K, Murakami K, et al. 1998. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85: 731-736. https://doi.org/10.1111/j.1365-2672.1998.00586.x
  49. Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet J-B, et al. 2007. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc. Natl. Acad. Sci. USA 104: 16970-16975. https://doi.org/10.1073/pnas.0705902104
  50. Hardoim PR, van Overbeek LS, Elsas JDv. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471. https://doi.org/10.1016/j.tim.2008.07.008
  51. Jackson CR, Stone BW, Tyler HL. 2015. Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture 5: 170-187. https://doi.org/10.3390/agriculture5020170
  52. Leben C. 1988. Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants. Phytopathology 78: 179-185. https://doi.org/10.1094/Phyto-78-179
  53. O’Brien R, Lindow S. 1989. Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79: 619-627.
  54. Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992. https://doi.org/10.1128/JCM.00632-07
  55. Marchi G, Sisto A, Cimmino A, Andolfi A, Cipriani MG, Evidente A, et al. 2006. Interaction between Pseudomonas savastanoi pv. savastanoi and Pantoea agglomerans in olive knots. Plant Pathol. 55: 614-624. https://doi.org/10.1111/j.1365-3059.2006.01449.x

Cited by

  1. Comparison of Database Search Methods for the Detection of Legionella pneumophila in Water Samples Using Metagenomic Analysis vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01272
  2. Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants vol.9, pp.None, 2018, https://doi.org/10.3389/fpls.2018.01563
  3. The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling vol.125, pp.3, 2018, https://doi.org/10.1111/jam.13914
  4. Cyberbiosecurity Challenges of Pathogen Genome Databases vol.7, pp.None, 2019, https://doi.org/10.3389/fbioe.2019.00106
  5. Genetic and functional characterization of the bacterial community on fruit of three raspberry (Rubus idaeus) cultivars vol.9, pp.2, 2018, https://doi.org/10.3233/jbr-180340
  6. Abundance of Plant-Associated Gammaproteobacteria Correlates with Immunostimulatory Activity of Angelica sinensis vol.6, pp.2, 2019, https://doi.org/10.3390/medicines6020062
  7. Myzus persicae (Hemiptera: Aphididae) infestation increases the risk of bacterial contamination and alters nutritional content in storage Chinese cabbage vol.100, pp.7, 2018, https://doi.org/10.1002/jsfa.10331
  8. Optimization of a Method for the Concentration of Genetic Material in Bacterial and Fungal Communities on Fresh Apple Peel Surfaces vol.8, pp.10, 2018, https://doi.org/10.3390/microorganisms8101480
  9. Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen vol.16, pp.1, 2021, https://doi.org/10.1371/journal.pone.0239792