DOI QR코드

DOI QR Code

Effect of limestone addition on mechanical properties of ceramic tiles with fly ash

플라이애시가 첨가된 도자타일 성능에 석회석 함량이 미치는 효과

  • Lee, Jin-Wook (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 이진욱 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2018.10.01
  • Accepted : 2018.11.27
  • Published : 2018.12.31

Abstract

A great amount of fly ash, which is a waste from a thermal power plant, has not been appropriately recycled until now. Landfill of flay ash causes environmental pollution and enormous economic costs. In this study, manufacturing of architectural ceramic tile was investigated replacing fly ash with clay raw material. The properties of porcelain tile was analyzed after manufacturing porcelain tile with mineral based glaze and fast firing process. In particular, the effect of the fly ash addition on the properties of ceramic tile was investigated by increasing the amount of limestone addition. Porcelain tile with fly ash showed excellent bending strength, water absorption, warping and abrasion resistance. However, a significant decrease in durability was observed through the autoclave test. Addition of limestone increased the water absorption, twisting and hydration expansion of the ceramic tile, but it was confirmed that the durability of the ceramic tile with fly ash was greatly improved. In conclusion, recycled architectural ceramic tiles, which can meet domestic construction standards, could be manufactured with the addition of fly ash and limestone.

화력발전소에서 발생하는 폐기물인 플라이애시(fly ash)는 현재까지도 상당량이 재활용되지 못하고 매립되어 환경오염 및 막대한 경제적 비용을 발생시키고 있다. 본 연구에서는 플라이애시를 건축 도자타일의 점토 원료를 대신함과 동시에 양산 공정을 그대로 적용하여 최종 제품을 제조하였다. 광물형 원료를 사용하여 소지와 1차(엔고베)와 2차(표면) 유약을 제조하고, 신속 소성(fast firing) 과정을 적용하여 도자타일을 제조한 후 도자타일의 성능을 측정하였다. 특히 소지에 첨가되는 석회석 함량을 증가시켜 플라이애시 첨가에 따른 도자타일 성능에 미치는 영향에 대하여 고찰하였다. 플라이애시가 첨가된 다공성 도자타일은 굽힘 강도와 흡수율, 뒤틀림 및 내마모성은 우수하지만 오토클레이브 실험을 통한 내구성은 크게 저하된 것을 확인하였다. 반면에 석회석을 첨가할 경우 도자타일의 흡수율과 뒤틀림 및 수화팽창은 증가하는 결과를 보이지만, 플라이애시가 첨가된 도자타일의 내구성을 크게 향상시키는 것으로 확인되었다. 결론적으로 플라이애시와 석회석 첨가를 통하여 국내 건축기준을 만족하면서 기존 도자타일 성능과 유사한 플라이애시 재활용 건축 도자타일을 제조할 수 있었다.

Keywords

GJSJBE_2018_v28n6_256_f0001.png 이미지

Fig. 3. Hydration properties of ceramic tile specimens after 2nd sintering.

GJSJBE_2018_v28n6_256_f0002.png 이미지

Fig. 4. Duration test results of ceramic tile specimens after 2nd sintering

GJSJBE_2018_v28n6_256_f0003.png 이미지

Fig. 5. FE-SEM cross-section images of ceramic tile specimens after 2nd sintering.

GJSJBE_2018_v28n6_256_f0004.png 이미지

Fig. 1. (a) Roller hearth kiln in KICET and (b) thermal history curve of 2nd sintering process

GJSJBE_2018_v28n6_256_f0005.png 이미지

Fig. 2. (a) particle size distribution, (b) XRD profile and (c) SEM images of fly ash used in this study.

Table 1 ICP-OES analysis results of raw materials (unit: wt%)

GJSJBE_2018_v28n6_256_t0001.png 이미지

Table 2 Batch composition of green body of ceramic tile (unit: wt%)

GJSJBE_2018_v28n6_256_t0002.png 이미지

Table 3 ICP-OES analysis results of frits (unit: wt%)

GJSJBE_2018_v28n6_256_t0003.png 이미지

Table 4 Physical properties of ceramic tile specimens after 2nd sintering

GJSJBE_2018_v28n6_256_t0004.png 이미지

Table 5 Coefficient of thermal expansion (CTE) of ceramic tile components (green body, engobe, surface glaze) (unit: 10-7/℃)

GJSJBE_2018_v28n6_256_t0005.png 이미지

References

  1. G. Fang, W. Keiho, W. Tu and M. Zhang, "Workability and mechnical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater. 172 (2018) 476. https://doi.org/10.1016/j.conbuildmat.2018.04.008
  2. K. Shwekat and H.C. Wu, "Benefit-cost analysis model of using class F fly ahs-based green cement in masonary unit", J. Cleaner Prod. 198 (2018) 443. https://doi.org/10.1016/j.jclepro.2018.06.229
  3. T. Nochaiya, W. Wongkeo and A Chaipanich, "Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete" Fuel ,89 (2010) 768. https://doi.org/10.1016/j.fuel.2009.10.003
  4. B. Rajamannan, C. Kalyana, G. Viruhthagirl and N. Shanmugam, "Effects of fly ash addition on the mechnical and other properties of ceramic tiles", Int. J. Latest Res. Sci. Technol. 2 (2013) 486.
  5. R. Sokolar and L. Smetanova, "Dry pressed ceramic tiles based on fly ash-clay body: Influence of fly ash granulometry and pentasodium triphosphate addition", Ceram. Int. 36 (2010) 215. https://doi.org/10.1016/j.ceramint.2009.07.009
  6. A. Mishulovich and J.L. Evanko, "Ceramic tiles from high-carbon fly ash", 2003 International Ash Utilization Symposium, http://www.flyash.info.
  7. J.H. Kim, W.S. Cho, K.T. Hwang and K.S. Hang, "Influence of fly ash addition on properties of ceramic wall tiles", Korean J. Mater. Res. 27 (2017) 76. https://doi.org/10.3740/MRSK.2017.27.2.76
  8. A.M.G.D. Mendonca, J.M. Cartaxo, L.N.L. Santana, G.A. Neves, H.C. Ferreira and R.R. Menezes, "Moisture expansion of ceramic tiles produced using kaolin and granite wastes", Ceramica 58 (2012) 216. https://doi.org/10.1590/S0366-69132012000200012
  9. B. Plesingerova, M. Klapac and M. Kovalcikova, "Moisture expansion of porous biscuit bodies-reason of glaze cracking", Ceram-Silikaty 46 (2002) 159.
  10. D.F. Zvezdin and A.V. Kiryanov, "Moisture expansion of ceramic tiles in double firing", Glass Ceram. 63 (2006) 20. https://doi.org/10.1007/s10717-006-0025-9
  11. R.J. Hoard, M.J. O'Brien, M.G. Khorasgany and V.S. Gopalaratnam, "A material-science apporach to understanding limestone-tempered pottery from the Midwestern United States", J. Archaeolog. Sci. 22 (1995) 823. https://doi.org/10.1016/0305-4403(95)90011-X
  12. Y. Liu and Y. Yang, "Evolution of the surface area of limestone during calcination and sintering", J. Power Energy Eng. 3 (2015) 56.
  13. B.C. Chukwudi, P.P. Ademusuru and B.A. Okorie, "Characterization of sintered ceramic tiles produced from steel slag", J. Miner. Mater. Cha. Eng. 11 (2012) 863.