DOI QR코드

DOI QR Code

Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties

우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조

  • Yu, Dongsu (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Kim, Jong-Young (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Jung, Jong-Yeol (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Baik, Seung-Woo (Maxtech Co. Ltd.) ;
  • Shim, Wooyoung (Department of Advanced Materials Science and Engineering, Yonsei University)
  • 유동수 (한국세라믹기술원 이천 분원) ;
  • 황광택 (한국세라믹기술원 이천 분원) ;
  • 김종영 (한국세라믹기술원 이천 분원) ;
  • 정종열 (한국세라믹기술원 이천 분원) ;
  • 백승우 ((주)맥테크) ;
  • 심우영 (연세대학교 신소재공학과)
  • Received : 2018.10.08
  • Accepted : 2018.11.15
  • Published : 2018.12.31

Abstract

Recently, porous ceramic materials with anti-static performance are urgently needed for semiconductor and OLED/LCD display manufacturing industry. In this work, we fabricated porous titanium manganese oxide ceramics having the surface resistivity of $10^8-10^{10}$ ohm and enhanced mechanical strength by partial sintering method using nanosized titanium oxide. By addition of nano-sized titanium oxide in the matrix, neck formation between grains was strengthened, which remarkably increased flexural strength up to 170 MPa (@porosity: 15 %), 110 MPa (@porosity: 31 %), compared to 80 MPa (@porosity: 26 %) for pristine titanium manganese oxide ceramics. We evaluated the performances of our ceramics as air-floating module for OLED flexible display manufacturing devices.

최근 반도체, 디스플레이 제조장비용 세라믹소재로 대전방지 기능을 가지는 다공성 세라믹스가 시급히 요구되고 있다. 본 연구에서는 다공성 산화티탄-산화망간 기지상에 산화티탄 나노분말을 첨가하여 부분소결함으로써 $10^8-10^{10}$ ohm의 표면저항을 가지고 향상된 기계적 강도를 가지는 다공성 세라믹스를 제조하였다. 나노 크기의 산화티탄 분말을 첨가함으로써 입자 사이의 목 형성을 강화하였고, 그 결과 꺽임강도를 170 MPa(@기공률 15 %), 110 MPa(@기공률 31 %) 수준으로 증가시킬 수 있었다. 이는 P-25를 첨가하지 않았을 때의 꺽임강도(80 MPa @ 기공률 26 %)에 비하여 주목할만큼 증가한 값으로 단순한 기공률 감소가 아닌 목 형성등 미세구조 변화에 따른 것으로 판단된다. 개발 세라믹스를 적용한 OLED 유연소자 제조공정용 공기부상용 모듈을 제작하여 진공척의 성능을 평가하였다.

Keywords

GJSJBE_2018_v28n6_263_f0001.png 이미지

Fig. 1. (a) Air-floating device for OLED display manufacture. (b) A schematic of OLED deposition module using vacuum chucking and air-floating devices. In deposition process zone, air-floating is employed for fixing a substrate. For loading and supporting a substrate, vacuum chucking is used. (c) vacuum chucking device for LCD substrates.

GJSJBE_2018_v28n6_263_f0002.png 이미지

Fig. 3. FE-SEM images of TiO2-MnO (TMO) ceramics with 30 % P-25 sintered at (a) 1100℃, (b) 1200℃, (c) 1300℃.

GJSJBE_2018_v28n6_263_f0003.png 이미지

Fig. 4. FE-SEM images of TiO2-MnO (TMO) ceramics sintered at 1100℃ with (a) 30 % P-25, (b) 40 % P-25, (× 1,000 magnification), (c) 30 % P-25, (d) 40 % P-25, (× 3,000 magnification) (e) 30 % P-25, (f) 40 % P-25 (× 10,000 magnification).

GJSJBE_2018_v28n6_263_f0004.png 이미지

Fig. 5. FE-SEM images of TiO2-MnO (TMO) ceramics sintered at 1200℃ with (a) 30 % P-25, (b) 40 % P-25, (× 1,000 magnification), (c) 30 % P-25, (d) 40 % P-25, (× 3,000 magnification) (e) 30 % P-25, (f) 40 % P-25 (× 10,000 magnification).

GJSJBE_2018_v28n6_263_f0005.png 이미지

Fig. 6. Evolution of porosity of TMO ceramics according to amounts of P-25 and sintering temperature.

GJSJBE_2018_v28n6_263_f0006.png 이미지

Fig. 7. Evolution of flexural strength of TMO ceramics according to amounts of P-25 and sintering temperature.

GJSJBE_2018_v28n6_263_f0007.png 이미지

Fig. 8. Evolution of flexural strength of TMO ceramics as a function of porosity.

GJSJBE_2018_v28n6_263_f0008.png 이미지

Fig. 2. X-ray diffraction patterns for the sintered specimens of TiO2-MnO (P-25 30 %) sintered at (a) 1100℃ and (c) 1200℃. TiO2-MnO (P-25 40 %) (b) 1100℃, (d) 1200℃, and (e) 1300℃.

GJSJBE_2018_v28n6_263_f0009.png 이미지

Fig. 9. (a) Evolution of surface resistivity of TMO ceramics as a function of P-25 amount and sintering temperature. (b) A schematic of surface resistivity measurement. (c) A demonstration of air-floating using TMO ceramics.

References

  1. J. Adler, "Ceramic diesel particulate filters", Int. J. Appl. Ceram. Technol. 2 (2005) 429. https://doi.org/10.1111/j.1744-7402.2005.02044.x
  2. A. Shyam, E. Lara-Curzio, T.R. Watkins and R.J. Parten, "Mechanical characterization of diesel particulate filters", J. Am. Ceram. Soc. 91 (2008) 1995. https://doi.org/10.1111/j.1551-2916.2008.02381.x
  3. A.J. Pyzik and C.G. Li, "New design of a ceramic filter for diesel emission control applications", Int. J. Appl. Ceram. Technol. 2 (2005) 440. https://doi.org/10.1111/j.1744-7402.2005.02045.x
  4. M. Wakita, "Application and development in the future of ceramic membrane", Bull. Ceram. Soc. Jpn. 45 (2010) 796.
  5. Z. Taslicuku, C. Balaban and N. Kuskonmaz, "Production of ceramic foam filters for molten metal filtration using expanded polystyrene", J. Eur. Ceram. Soc. 27 (2007) 637. https://doi.org/10.1016/j.jeurceramsoc.2006.04.129
  6. Y. Zhang, J. Yu, S. Chen and S. Wan, "Waste water treatment using bioreactor with dual functional ceramic membrane", Int. J. Environ. Pollut. 38 (2009) 318. https://doi.org/10.1504/IJEP.2009.027232
  7. L. Le Guehennec, P. Layrolle and G. Daculsi, "A review of bioceramics and fibrin sealant", Eur. Cells Mater. 8 (2004) 1. https://doi.org/10.22203/eCM.v008a01
  8. T. Suzuki, H. Zahir, Y. Funabashi, T. Yamaguchi, Y. Fujishiro and M. Awano, "Wet atomisation of Gd-doped $CeO_2$ electrolyte slurries for intermediate temperatures' microtubular SOFC applications", Fuel Cells 325 (2009) 852.
  9. E. Roncari, C. Galassi, F. Craciun, C. Capiani and A. Piancastelli, "A microstructural study of porous piezoelectric ceramics obtained by different methods", J. Eur. Ceram. Soc. 21 (2001) 409. https://doi.org/10.1016/S0955-2219(00)00208-9
  10. E.Y. Litovsky and M. Shapiro, "Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part1, refractories and ceramics with porosity below 30 %", J. Am. Ceram. Soc. 75 (1992) 3425. https://doi.org/10.1111/j.1151-2916.1992.tb04445.x
  11. E. Litovsky, M. Shapiro and A. Shavit, "Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part2, refractories and ceramics with porosity exceeding 30 %", J. Am. Ceram. Soc. 79 (1996) 1366. https://doi.org/10.1111/j.1151-2916.1996.tb08598.x
  12. T. Ohji and M. Fukushima, "Macro-porous ceramics: processing and properties", Int. Mater. Rev. 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  13. S.C. Nanjangud, R. Brezny and D.J. Green, "Strength and Young's modulus behavior of a partially sintered porous alumina", J. Am. Ceram. Soc. 78 (1995) 266. https://doi.org/10.1111/j.1151-2916.1995.tb08401.x
  14. D. Hardy and D.J. Green, "Mechanical properties of a partially sintered alumina", J. Eur. Ceram. Soc. 15 (1995) 769. https://doi.org/10.1016/0955-2219(95)00045-V
  15. M. Scheffler and P. Colombo, "Cellular ceramics: structure, manufacturing, properties and applications", (Wiley-VCH Verlag GmbH., Weinheim, 2006) p. 645.
  16. N. Claussen, S. Wu and D. Holz, "Reaction bonding of aluminum oxide (RBAO) composites: Processing, reaction mechanisms and properties", J. Eur. Ceram. Soc. 14 (1994) 97. https://doi.org/10.1016/0955-2219(94)90097-3
  17. J.H. She and T. Ohji, "Fabrication and characterization of highly porous mullite ceramics", Mater. Chem. Phys. 80 (2003) 610. https://doi.org/10.1016/S0254-0584(03)00080-4
  18. Y. Suzuki, P.E.D. Morgan and T. Ohji, "New uniformly porous $CaZrO_3/MgO$ composites with three-dimensional network structure from natural dolomite", J. Am. Ceram. Soc. 83 (2000) 2091.
  19. Y. Suzuki, N. Kondo, T. Ohji and P.E.D. Morgan, "Uniformly porous composites with 3-D Network structure (UPC-3D) for high-temperature filter applications", Int. J. Appl. Ceram. Technol. 1 (2004) 76.
  20. J.H. She, J.F. Yang, N. Kondo, T. Ohji, S. Kanzaki and Z.Y. Deng, "High-strength porous silicon carbide ceramics by an oxidation-bonding technique", J. Am. Ceram. Soc. 85 (2002) 2852.
  21. S.T. Oh, K.I. Tajima, M. Ando and T. Ohji, "Strengthening of porous alumina by pulse electric current sintering and nanocomposite", Processing J. Am. Ceram. Soc. 83 (2000) 1314.
  22. D.D. Jayaseelan, N. Kondo, M.E. Brito and T. Ohji, "High-strength porous alumina ceramics by the pulse electric current sintering technique", J. Am. Ceram. Soc. 85 (2002) 267.
  23. Y. Yang, Y. Wang, W. Tian, Z. Wang, C.-G. Li, Y. Zhao and H.-M. Bian, "In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders", Scr. Mater. 60 (2009) 578. https://doi.org/10.1016/j.scriptamat.2008.12.016
  24. K.M. Choi, W.-S. Cho, J.-Y. Kim, J.-Y. Jung, S.-W. Baik and K.H, Lee, "Synthesis of electro-conducting macroporous aluminosilicate-carbon nanocomposite", J. Kor. Inst. Electr. Electron. Mater. Eng. 30 (2017) 67.
  25. K.S. Kim, K.Y. Song, S.Y. Park, S. Kim, S.J. Kim and S.O. Yoon, "Properties of low temperature sintered porous ceramics from alumina-zinc borosilicate glass", J. Kor. Ceram. Soc. 46 (2009) 609. https://doi.org/10.4191/KCERS.2009.46.6.609
  26. W.D. Kingery and M. Berg, "Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion", J. Appl. Phys. 26 (1955) 1205. https://doi.org/10.1063/1.1721874
  27. S.H. Chae, Y.-W. Kim, I.H. Song, H.D. Kim and M. Narisawa, "Porosity control of porous silicon carbide ceramics", J. Eur. Ceram. Soc. 29 (2009) 2867. https://doi.org/10.1016/j.jeurceramsoc.2009.03.027
  28. J.H. Eom and Y.-W. Kim, "Effect of additives on mechanical properties of macroporous silicon carbide ceramics", Met. Mater. Int. 16 (2010) 399. https://doi.org/10.1007/s12540-010-0609-3