DOI QR코드

DOI QR Code

Novel Buck Mode Three-Level Direct AC Converter with a High Frequency Link

  • Li, Lei (School of Automation, Nanjing University of Science and Technology) ;
  • Guan, Yue (School of Automation, Nanjing University of Science and Technology) ;
  • Gong, Kunshan (School of Automation, Nanjing University of Science and Technology) ;
  • Li, Guangqiang (School of Automation, Nanjing University of Science and Technology) ;
  • Guo, Jian (School of Automation, Nanjing University of Science and Technology)
  • Received : 2017.05.11
  • Accepted : 2017.09.30
  • Published : 2018.03.20

Abstract

A novel family of Buck mode three-level direct ac converters with a high frequency link is proposed. These converters can transfer an unsteady high ac voltage with distortion into a regulated sinusoidal voltage with a low THD at the same frequency. The circuit configuration is constituted of a three-level converter, high frequency transformer, cycloconverter, as well as input and output filters. The topological family includes forward, push-pull, half-bridge, and full-bridge modes. In order to achieve a reliable three-level ac-ac conversion, and to overcome the surge voltage and surge current of the cycloconverter, a phase-shifted control strategy is introduced in this paper. A prototype is presented with experimental results to demonstrate that the proposed converters have five advantages including high frequency electrical isolation, lower voltage stress of the power switches, bi-directional power flow, low THD of the output voltage, and a higher input power factor.

Keywords

E1PWAX_2018_v18n2_407_f0001.png 이미지

Fig. 1. Circuit diagrams for the proposed topological family. (a) Forward mode. (b) Interleaving forward mode. (c) Push-pull full-wavemode. (d) Push-pull full-bridge mode. (e) Half-bridge full-wave mode. (f) Half-bridge full-bridge mode. (g) Full-bridge full-wavemode. (h) Full-bridge full-bridge mode.

E1PWAX_2018_v18n2_407_f0002.png 이미지

Fig. 2. Principal waveforms within one switching period Ts.

E1PWAX_2018_v18n2_407_f0003.png 이미지

Fig. 3. Twelve switching modes in the CCM during one switching period Ts. (a) [t1- t2]. (b) [t2- t3]. (c) [t3- t4]. (d) [t4- t5].(e) [t5- t6]. (f) [t6- t7]. (g) [t7- t8]. (h) [t8- t9]. (i) [t9- t10]. (j) [t10- t11]. (k) [t11- t12]. (l) [t12- t13].

E1PWAX_2018_v18n2_407_f0004.png 이미지

Fig. 4. Equivalent circuits in the CCM during one Ts. (a) State 1.(b) State 2.

E1PWAX_2018_v18n2_407_f0005.png 이미지

Fig. 5. Designed and developed prototype.

E1PWAX_2018_v18n2_407_f0006.png 이미지

Fig. 6. Principle test waveforms of the proposed converter. (a) CH2: uN1 (200V/div); CH1: iN1 (10A/div); t(5ms/div). (b) CH2: uN1(196V/div); CH1: iN1 (9.8A/div); t(20μs/div). (c) CH2: uAB (200V/div); CH1: iLf (10A/div); t(10ms/div). (d) CH2: uAB (146V/div);CH1: iLf (1.46A/div); t(18μs/div). (e) CH1: trigger voltage ugs1a of the power switch S1a (20V/div); CH2: voltage uds1a across S1a(200V/div); t(5ms/div). (f) CH1: trigger voltage ugs5b of the power switch S5b(20V/div); CH2: voltage uds5b across S5b (200V/div);t(10μs/div). (g) CH1: input voltage ui (200V/div); CH2: reference voltage uref (5V/div); t(5ms/div). (h) CH1: uo at a resistive load(100V/div); CH2: io at a resistive load (5A/div); t(10ms/div). (i) CH1: io at a RL load (5A/div); CH2: uo at a RL load (100V/div);t(10ms/div). (j) CH1: io at a RC load (2A/div); CH2: uo at a RC load (100V/div); t(10ms/div).

E1PWAX_2018_v18n2_407_f0007.png 이미지

Fig. 7. Conversion efficiency and line power factor versus theload at different input voltages. (a) Conversion efficiency ηversus output power Po at different input voltages ui. (b) Linepower factor cosφi versus output power Po at different inputvoltages ui.

TABLE I COMPARISON OF THE PROPOSED TOPOLOGIES

E1PWAX_2018_v18n2_407_t0001.png 이미지

References

  1. H. Keyhani and H. A. Toliyat, "Isolated ZVS highfrequency- link AC-AC converter with a reduced switch count," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4156-4166, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2290544
  2. U. Nasir, M. Rivera, A. Costabeber, and P. W. Wheeler, "A Venturini based modulation technique for a newisolated AC/AC power converter," IECON 2016 -42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6243-6248, 2016.
  3. T. Friedli, J. W. Kolar, J. Rodriguez, and P. W. Wheeler, "Comparative evaluation of three-phase AC-AC matrix converter and voltage dc-link back-to-back converter systems," IEEE Trans. Ind. Electron., Vol. 59, No. 12, pp. 4487-4510, Dec. 2012. https://doi.org/10.1109/TIE.2011.2179278
  4. C. Li, Y. Deng, Z. Lv, W. Li, X. He, and Y. Wang, "Virtual quadrature source-based sinusoidal modulation applied to high-frequency link converter enabling arbitrary direct AC-AC power conversion," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4195-4208, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2287508
  5. G. P. Adam, I. A. Abdelsalam, K. H. Ahmed, and B. W. Williams, "Hybrid multilevel converter with cascaded H-bridge cells for HVDC applications: operating principle and scalibility," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 65-77, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2303111
  6. J. Rodriguez, M. M. D. Bellar, and R. R. S. Munoz- Aguilar, "Multilevel-clamped multilevel converters," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1055-1060, Mar. 2012. https://doi.org/10.1109/TPEL.2011.2172224
  7. K. K. Nallamekala and K. Sivakumar, "A fault-tolerant dual three-level inverter configuration for multipole induction motor drive with reduced torque ripple," IEEE Trans. Ind. Electron., Vol. 63, No. 3, pp. 1450-1457, Mar. 2016. https://doi.org/10.1109/TIE.2015.2495281
  8. A. Nami, J. Liang, F. Dukhuizen, and G. D. Demetriades, "Modular multilevel converters for HVDC applications: review on converter cells and functionalities," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 18-36, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2327641
  9. Z. Li, P. Wang, H. Zhu, and Y. Li, "An improved pulse width modulation method for chopper-cell-based modular multilevel converters," IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3472-3481, Aug. 2012. https://doi.org/10.1109/TPEL.2012.2187800
  10. M. Sharifzade, H. Vahedi, R. Portillo, M. Khenar, A. Sheikholeslami, L. G. Franquelo, and K. Al-Haddad, "Hybrid SHM-SHE pulse amplitude modulation for high power four-leg inverter," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7234-7242, Nov. 2016. https://doi.org/10.1109/TIE.2016.2538204
  11. H. Zhao, T. Jin, S. Wang, and L. Sun, "A real-time selective harmonic elimination based on a transient-free, inner closed-loop control for cascaded multilevel inverters," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1000- 1014, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2413898
  12. D. Peftitsis, G. Tolstoy, A. Antonopoulos, and J. Rabkowski, "High-power modular multilevel converters with SiC JFETs," IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 28-36, Jan. 2012. https://doi.org/10.1109/TPEL.2011.2155671
  13. L. Zhang, K. Sun, Y. Xing, and J. Zhao, "A family of five-level dual-buck full-bridge inverters for grid-tied applications," IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 7029-7042, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2511068
  14. N. D. Weise, G. Castelino, K. Basu, and N. Mohan, "A single-stage dual-active-bridge-based soft switched AC/DC converter with open-loop power factor correction and other advanced features," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4007-4016, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2293112
  15. M. M. C. Merlin, T. C. Green, P. D. Mitcheson, D. R. Trainer, R. Critchley, W. Crookes, and F. Hassan, "The alternate arm converter: a new hybrid multilevel converter with dc-fault blocking capability," IEEE Trans. Power Del., Vol. 29, No. 1, pp. 310-317, Jan. 2014. https://doi.org/10.1109/TPWRD.2013.2282171
  16. H. Yang and M. Saeedifard, "A capacitor voltage balancing strategy with minimized ac circulating current for the DC-DC modular multilevel converter," IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp. 956-965, Feb. 2017. https://doi.org/10.1109/TIE.2016.2613059
  17. S. Du, B. Wu, K. Tian, D. Xu, and N. R. Zargari, "A novel medium-voltage modular multilevel DC-DC converter," IEEE Trans. Ind. Electron., Vol. 63, No. 12, pp. 7939-7949, Dec. 2016. https://doi.org/10.1109/TIE.2016.2542130
  18. A. Gandomkar, A. Parastar, and J. Seok, "High-power multilevel step-up DC/DC converter for offshore wind energy systems," IEEE Trans. Ind. Electron., Vol. 63, No. 12, pp. 7574-7585, Dec. 2016. https://doi.org/10.1109/TIE.2016.2594050
  19. J. Napoles, A. J. Watson, J. J. Padilla, J. I. Leon, L. G. Franquelo, P. W. Wheeler, and M. A. Aguirre, "Selective harmonic mitigation technique for cascaded H-bridge rectifiers with nonequal dc link voltages," IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1963-1971, May 2013. https://doi.org/10.1109/TIE.2012.2192896
  20. A. Moeini, H. Iman-Eini, and A. Marzoughi, "DC link voltage balancing approach for cascaded H-bridge active rectifier based on selective harmonic elimination-pulse width modulation," IET Power Electron., Vol. 8, No. 4, pp. 583-590, Apr. 2015. https://doi.org/10.1049/iet-pel.2014.0086
  21. D. Divan, J. Sastry, A. Prasai, and H. Johal, "Thin ac converters-a new approach for making existing grid assets smart and controllable," in Proc. IEEE Power Electron. Spec. Conf., pp. 1695-1701, 2008.
  22. D. Divan and J. Sastry, "Control of multilevel direct ac converters," in Proc. IEEE Energy Convers. Congr. Expo., pp. 3077-3084, 2009.
  23. Y. L. Meng, P. W. Wheeler, and C. Klumpner, “Spacevector modulated multilevel matrix converter,” IEEE Trans. Ind. Electron., Vol. 57, No. 10, pp. 3385-3394, Oct. 2010. https://doi.org/10.1109/TIE.2009.2038940
  24. L. Li, J. D. Yang, and Q. L. Zhong, “Novel family of single-stage three-level ac choppers,” IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 504-511, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2061866
  25. L. Li and D. C. Tang, "Cascade three-level ac-ac direct converter," IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 27-34, Jan. 2012. https://doi.org/10.1109/TIE.2011.2143376
  26. J. Zhu and L. Li, "Novel high frequency isolated half-bridge three-level AC/AC converter," 2011 6th IEEE Conference on Industrial Electronics and Applications, pp. 1583-1587, 2011.