DOI QR코드

DOI QR Code

A Generalized Space Vector Modulation Scheme Based on a Switch Matrix for Cascaded H-Bridge Multilevel Inverters

  • K.J., Pratheesh (Department of Electrical Engineering, National Institute of Technology) ;
  • G., Jagadanand (Department of Electrical Engineering, National Institute of Technology) ;
  • Ramchand, Rijil (Department of Electrical Engineering, National Institute of Technology)
  • Received : 2017.07.25
  • Accepted : 2017.11.01
  • Published : 2018.03.20

Abstract

The cascaded H Bridge (CHB) multilevel inverter (MLI) is popular among the classical MLI topologies due to its modularity and reliability. Although space vector modulation (SVM) is the most suitable modulation scheme for MLIs, it has not been used widely in industry due to the higher complexity involved in its implementation. In this paper, a simple and novel generalized SVM algorithm is proposed, which has both reduced time and space complexity. The proposed SVM involves the generalization of both the duty cycle calculation and switching sequence generation for any n-level inverter. In order to generate the gate pulses for an inverter, a generalized switch matrix (SM) for the CHB inverter is also introduced, which further simplifies the algorithm. The algorithm is tested and verified for three-phase, three-level and five-level CHB inverters in simulations and hardware implementation. A comparison of the proposed method with existing SVM schemes shows the superiority of the proposed scheme.

Keywords

E1PWAX_2018_v18n2_522_f0001.png 이미지

Fig. 1. Space vector diagram of a three-level inverter.

E1PWAX_2018_v18n2_522_f0002.png 이미지

Fig. 2. Switching sequence in space vector modulation:(a)ascending; (b) descending.

E1PWAX_2018_v18n2_522_f0003.png 이미지

Fig. 3. Switching sequence in nearest level modulation: (a)ascending; (b) descending.

E1PWAX_2018_v18n2_522_f0004.png 이미지

Fig. 4. Sub-hexagon centres in a space vector diagram of a threelevel inverter.

E1PWAX_2018_v18n2_522_f0005.png 이미지

Fig. 5. Dmax, Dmid and Dmin variation.

E1PWAX_2018_v18n2_522_f0006.png 이미지

Fig. 6. SVM duty cycles using the proposed method.

E1PWAX_2018_v18n2_522_f0007.png 이미지

Fig. 7. Switch numbering followed for each H-bridge of theinverter. For additional H-bridges in the same phase (leg) thenumbering is continuous.

E1PWAX_2018_v18n2_522_f0008.png 이미지

Fig. 8. Complete flowchart for the proposed SVM scheme.

E1PWAX_2018_v18n2_522_f0009.png 이미지

Fig. 9. Switching functions of: (a) five-level; (b) seven-level; (c) nine-level; (d) 21 level inverter.

E1PWAX_2018_v18n2_522_f0010.png 이미지

Fig. 10. Pole voltages of CHB inverters at a modulation index of 0.85: (a) three-level; (b) five-level.

E1PWAX_2018_v18n2_522_f0011.png 이미지

Fig. 11. Line voltages of CHB inverters, at a modulation index of 0.85: (a) three-level; (b) five-level.

E1PWAX_2018_v18n2_522_f0012.png 이미지

Fig. 12. Photograph of the experimental setup.

E1PWAX_2018_v18n2_522_f0013.png 이미지

Fig. 13. Experimental results in a three-level CHBI for: (a) pole voltages; (b) line voltages; (c) phase voltages.

E1PWAX_2018_v18n2_522_f0014.png 이미지

Fig. 14. Experimental results in a five-level CHBI for: (a) pole voltages; (b) line voltages; (c) phase voltages.

E1PWAX_2018_v18n2_522_f0015.png 이미지

Fig. 15. Experimental results for phase voltage (CH1) and its corresponding phase current (CH2) for: (a) three-level CHBI; (b) five-levelCHBI; and (c) variation inthe pole voltage of a five-level CHB inverter while the modulation index is varied from 0.2 to 0.9.

E1PWAX_2018_v18n2_522_f0016.png 이미지

Fig. 16. Experimental results of line voltage THD vs. modulationindex.

E1PWAX_2018_v18n2_522_f0017.png 이미지

Fig. 17. Comparison of the dynamic load response of theproposed switch matrix based SVM (SM SVM) and thetwo-level inverter based SVM (TI SVM) in [21]: (a) Statorcurrent comparison; (b) Speed comparison.

TABLE I DUTY RATIO CLASSIFICATION

E1PWAX_2018_v18n2_522_t0001.png 이미지

TABLE II SWITCHING SEQUENCE DESIGN USING A SEQUENCE SELECTOR

E1PWAX_2018_v18n2_522_t0002.png 이미지

TABLE III SWITCHING FUNCTION VALUES AND SWITCH CONDITIONS

E1PWAX_2018_v18n2_522_t0003.png 이미지

TABLE IV SIMULATION AND EXPERIMENTAL PARAMETERS

E1PWAX_2018_v18n2_522_t0004.png 이미지

TABLE V COMPARISON OF THE TIMER TASK TURNAROUND TIME

E1PWAX_2018_v18n2_522_t0005.png 이미지

TABLE VI COMPARISON OF THE MEMORY REQUIREMENT

E1PWAX_2018_v18n2_522_t0006.png 이미지

TABLE VII COMPARISON OF LINE VOLTAGE THD

E1PWAX_2018_v18n2_522_t0007.png 이미지

References

  1. A. Nabae, H. Akagi, and I. Takahashi, "A new neutralpoint- clamped PWM inverter," IEEE Trans. Ind. Appl., Vol. IA-17, No. 5, pp. 518-523, Sep. 1981. https://doi.org/10.1109/TIA.1981.4503992
  2. S. Kouro, K. Gopakumar, L. Franquelo, M. Malinowski, J. Pou, B. Wu, J. Rodriguez, M. Perez, and J. Leon, "Recent advances and industrial applications of multilevel converters," IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010. https://doi.org/10.1109/TIE.2010.2049719
  3. M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, "A survey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2197-2206, Jul. 2010. https://doi.org/10.1109/TIE.2009.2030767
  4. J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters: A survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug 2002. https://doi.org/10.1109/TIE.2002.801052
  5. L. G. Franquelo, J. I. Leon, and E. Dominguez, "Recent advances in high-power industrial applications," 2010 IEEE International Symposium on Industrial Electronics, pp. 5-10, 2010.
  6. J. Rodriguez L. G. Franquelo,S. Kouro, J. I. Leon, R. C. Portillo, M. Á . M. Prats, and M. A. Perez, "Multilevel converters: An enabling technology for high-power applications," in Proceedings of the IEEE, Vol. 97, No. 11, pp. 1786-1817, Nov. 2009. https://doi.org/10.1109/JPROC.2009.2030235
  7. A. M. Massoud, S. J. Finney, and B. W. Williams, "Control techniques for multilevel voltage source inverters," Power Electronics Specialist Conference, 2003. PESC '03. 2003 IEEE 34th Annual, Vol. 1, pp. 171-176, 2003.
  8. R. Maheshwari, S. Busquets-Monge, and J. Nicolas- Apruzzese, "A novel approach to generate effective carrierbased pulsewidth modulation strategies for diode-clamped multilevel DC-AC converters," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7243-7252, Nov. 2016. https://doi.org/10.1109/TIE.2016.2538198
  9. B. Wu, "Diode Clamped Multilevel Inverters," in High-Power Converters and AC Drives, Wiley-IEEE Press, pp. 143-177, 2006.
  10. J. I. Leon, S. Vazquez, J. A. Sanchez, R. Portillo, L. G. Franquelo, J. M. Carrasco, and E. Dominguez," Conventional Space-Vector Modulation Techniques Versus the Single- Phase Modulator for Multilevel Converters," IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2473-2482, Jul. 2010. https://doi.org/10.1109/TIE.2009.2034674
  11. A. Edpuganti and A. K. Rathore, "A survey of lowswitching frequency modulation techniques for mediumvoltage multilevel converters," 2014 IEEE Industry Application Society Annual Meeting, pp. 1-8, 2014.
  12. S. K. Sahoo and T. Bhattacharya, "Phase shifted carrier based synchronized sinusoidal PWM techniques for cascaded H-bridge multilevel inverters," IEEE Trans. Power Electron., Vol. 33, No. 1, pp. 513-524, Jan. 2018. https://doi.org/10.1109/TPEL.2017.2669084
  13. B. Jacob and M. R. Baiju, "A new space vector modulation scheme for multilevel inverters which directly vector quantize the reference space vector," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 88-95, Jan. 2015. https://doi.org/10.1109/TIE.2014.2326998
  14. S. Das and G. Narayanan, "Novel switching sequences for a space-vector-modulated three-level inverter," IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1477-1487, Marc 2012. https://doi.org/10.1109/TIE.2011.2163373
  15. K. J. Pratheesh, G. Jagadanand, and R. Ramchand, "An improved space vector PWM method for a three-level inverter with reduced THD," 2015 9th International Conference on Compatibility and Power Electronics (CPE), pp. 167-172, 2015.
  16. K. J. Pratheesh, G. Jagadanand, and R. Ramchand, "Reduced current harmonics in the NPC inverter with a novel space vector PWM," Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International Conference on, pp. 1-5, 2015.
  17. L. Franquelo, J. Galvan, M. Prats, , M. Perales, R. Portillo, J. Carrasco, E. Diez and J. Jimenez, "Threedimensional space-vector modulation algorithm for fourleg multilevel converters using abc coordinates," IEEE Trans. Ind. Electron., Vol. 53, No. 2, pp. 458-466 , 2006. https://doi.org/10.1109/TIE.2006.870884
  18. B. P. McGrath, D. G. Holmes, and T. Lipo, "Optimized space vector switching sequences for multilevel inverters," IEEE Trans. Power Electron., Vol. 18, No. 6, pp. 1293- 1301, Nov. 2003.
  19. W. Yao, H. Hu, and Z. Lu, "Comparisons of space-vector modulation and carrier-based modulation of multilevel inverter," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 45-51, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911865
  20. N. Celanovic and D. Boroyevich, "A fast space-vector modulation algorithm for multilevel three-phase converters," IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 637-641, Mar./ Apr. 2001. https://doi.org/10.1109/28.913731
  21. A. K. Gupta and A. M. Khambadkone, "A space vector PWM scheme for multilevel inverters based on two-level space vector PWM," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1631-1639, Oct. 2006. https://doi.org/10.1109/TIE.2006.881989
  22. A. Mohamed A. S., A. Gopinath, and M. R. Baiju, "A simple space vector PWM generation scheme for any general n-level inverter," IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1649-1656, May 2009. https://doi.org/10.1109/TIE.2008.2011337
  23. Y. Deng, K. H. Teo, C. Duan, T. G. Habetler, and R. G. Harley, "A fast and generalized space vector modulation scheme for multilevel inverters," IEEE Trans. Power Electron., Vol. 29, No. 10, pp. 5204-5217, Oct. 2014. https://doi.org/10.1109/TPEL.2013.2293734
  24. Y. Deng, Y. Wang, K. H. Teo, and R. G. Harley, "A simplified space vector modulation scheme for multilevel converters," IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 1873-1886, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2429595
  25. P. Chamarthi, P. Chhetri, and V. Agarwal, "Simplified implementation scheme for space vector pulse width modulation of n-level inverter with online computation of optimal switching pulse durations," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 6695-6704, Nov. 2016. https://doi.org/10.1109/TIE.2016.2586438
  26. Y. Deng, M. Saeedifard, and R. G. Harley, "An improved nearest-level modulation method for the modular multilevel converter," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1595-1600, 2015.
  27. Y. Deng and R. G. Harley, "Space-vector versus nearestlevel pulse width modulation for multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 2962- 2974, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2331687
  28. K. J. Pratheesh, G. Jagadanand, and R. Ramchand, "A simple and low cost generalised modulation technique for neutral point clamped multilevel inverters," 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6, 2016.