DOI QR코드

DOI QR Code

Analysis of the Dead Layer Thickness effect and HPGe Detector by Penelope Simulation

Penelope Simulation에 의한 불감층 두께 효과 및 HPGe 검출기 분석

  • Jang, Eun-Sung (Department of Radiation Oncology, Kosin University Gospel Hospital) ;
  • Lee, Hyo-Yeong (Department of Radiological Science, Dong-Eui University)
  • 장은성 (고신대학교 복음병원 방사선종양학과) ;
  • 이효영 (동의대학교 방사선학과)
  • Received : 2018.11.26
  • Accepted : 2018.12.31
  • Published : 2018.12.30

Abstract

Germanium crystals have a dead layer that causes efficiency deterioration because the layer is not useful for detection but strongly weakens the photons. Thus, when the data provided by the manufacturer is used in the detector simulation model, there is a slight difference between the calculated efficiency and the measured efficiency.The shape and dimensions of the high purity germanium (HPGe) detector were determined by CT scans to accurately characterize the shape for the Monte Carlo roll simulation. It is found that the adjustment of the dead layer is a good match with the relative deviation of ${\pm}3%$ between the measurement efficiency and the simulation efficiency at the energy range of 50 - 1500 keV. Simulation data were compared by varying the thickness of the dead layer. The new Monte Carlo simulations were compared with the experimental results to obtain new blank layer thicknesses. The difference in dead layer results for the 1.5 mm thick end cap simulation model in 1.4 and 1.6 mm thick End Cap simulation models was a systematic error due to the accuracy of the end cap dimensions. After considering all errors including statistical errors and systematic errors, the thickness of the detector was calculated as $1.02{\pm}0.14mm$. Therefore, it was confirmed that the increase in the thickness of the dead layer causes the effect to be effected on the efficiency reduction.

게르마늄 결정은 검출에 유용하지 않지만, 광자를 강하게 약화하기 때문에 효율성 저하를 일어키는 불감층을 가지고 있다. 따라서 제조업체가 제공하는 데이터를 검출기 시뮬레이션 모델에 사용하면 계산된 효율성과 측정된 효율성 사이에 약간의 큰 차이가 나타난다. 고순도 게르마늄(HPGe) 검출기의 모양과 치수는 CT 스캔을 통해 몬테카롤롤 시뮬레이션을 위해 형상을 정확하게 형상화하였다. 이 결과 불감층 두께 증가가 효율 감소과정에 미치는 영향을 연구하고자 한다. 불감층의 조정은 50 - 1500 keV의 에너지 범위에서 측정 효율과 시뮬레이션 효율 사이의 ${\pm}3%$의 상대편차와 함께 좋은 일치임을 확인하였다. 불감층 두께에 변화를 주어 시뮬레이션 데이터를 비교하였다. 몬테카롤로 시뮬레이션 결과를 실험 결과와 비교하여 새로운 불감층 두꼐를 얻었다. 1.4와 1.6 mm 두께의 End Cap 시뮬레이션 모델에서 1.5mm 두께의 End Cap시뮬레이션 모델에 대한 불감층 두꼐 결과의 차이는 End Cap 치수의 정확성으로 인한 체계적인 오류였다. 통계적 오류와 체계적 오류를 고려한 후, 검출기의 불감충 두께는 $1.02{\pm}0.14mm$로 도출되었다. 따라서 불감층 두께의 증가는 효율성 감소에 영향을 미치는 것을 확인하였다.

Keywords

BSSHB5_2018_v12n7_801_f0001.png 이미지

Fig. 1. Characteristics of HPGe detector as provided by the manufacturer.

BSSHB5_2018_v12n7_801_f0002.png 이미지

Fig. 2. CT radiogram of the detector system.

BSSHB5_2018_v12n7_801_f0003.png 이미지

Fig. 3. The simulation spectrum of the 133Ba source. The distance between the source and end-cap is 10 mm, and the dead layer thickness is assumed to be 1.0 mm.

BSSHB5_2018_v12n7_801_f0004.png 이미지

Fig. 4. Peak efficiency curves for several values of the thickness of the dead layer.

BSSHB5_2018_v12n7_801_f0005.png 이미지

Fig. 5. Determination of the thickness of the dead layery the source point of 5 mm. The black points are from the simulation providing the ratio of the number of events on the 81 keV photoelectron peak to that in the 356 keV photoelectron peak. The horizontal band is from the experimental data. The vertical band determines the dead layer thickness by comparing the experimental ratio and simulation fitting line. The error bars for the simulation points are smaller than the data point size and invisible in the plot.

BSSHB5_2018_v12n7_801_f0006.png 이미지

Fig. 6. An experimental spectrum of the 133Ba source. The distance between the source and end-cap is 5 mm, and the dead layer thickness is assumed to be 1.0 mm

BSSHB5_2018_v12n7_801_f0007.png 이미지

Fig. 7. Mapping of fraction of gamma ray absorbed at different layers in the detector.

Table 1. Detector dimensions as specified by the manufacturer and as optimised by Monte Carlo simulations.

BSSHB5_2018_v12n7_801_t0001.png 이미지

Table 2. Gamma ray intensities of a 133Ba ,152Eu source

BSSHB5_2018_v12n7_801_t0002.png 이미지

References

  1. J. Boson, G. Agren, L. Johansson, "A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations," Nuclear Instruments and Methods in Physics. Vol. 587, No. 2, pp. 304-314. 2008. https://doi.org/10.1016/j.nima.2008.01.062
  2. P. Dryak, P. Kovar, "Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source to detector distance of 25 cm," Applied Radiation Isotopes, Vol. 64, No. 10, pp. 1346-1349, 2006. https://doi.org/10.1016/j.apradiso.2006.02.083
  3. E. Andreotti, M. Hult, G. Marissens, G. Lutter, A. Garfagnini, S. Hemmer, K. Von Sturm, "Deterrmination of dead-layer variation in HPGe detector," Applied Radiation Isotopes, Vol. 87, No. 4, pp. 331-335, 2014. https://doi.org/10.1016/j.apradiso.2013.11.046
  4. Huy N.Q., Binh D.Q., An V.X., "Study on the increase of inactive germanium layer in a high-purity germanium detector after a long time operation applying MCNP code," Nuclear Instrumnets and Methods in Physics, Vol. 537, No. 3, pp. 384-388, 2006.
  5. Huy N.Q. et al., "The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector," Nuclear Instrumnets and Methods in Physics, Vol. 621, No. 1, pp. 390-394, 2010. https://doi.org/10.1016/j.nima.2010.05.007
  6. J. Rodenas, A. Pascual, I. Zarza, V. Serradell, J. Ortiz, L. Ballesteros, "Analusis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method," Nuclear Instrumets and Methods in Physics, Vol. 496, No. 2, pp. 390-399, 2003. https://doi.org/10.1016/S0168-9002(02)01748-5
  7. W. Sowa, E. Martini, K. Gehrcke, P. Marschner, M.J. Naziry. "Uncertainties of in situ gamma spectrometry for environmental monitoring," Radiat. Prot. Dosim., Vol. 27, No. 2, pp. 93, 1989.
  8. K. Rybacck, P. Jacob, R. Meckbach, "In-situ determination of deposited radionuclide activities: Improved method using derived depth disrtibution from the measured photon spectra," Health Phys., Vol. 62, No. 6, pp. 519-528, 1992. https://doi.org/10.1097/00004032-199206000-00004
  9. TTH. Loan, VN. Ba, THN, Thy, HTN. Hong. "Validation for Monte Carlo simulation of characteristics of gamma spectrometer using HPGe GMX35p470 detector by MCNP5 and Geant4 codes," Journal of Science Ho Chi Minh city University, Vol. 3 No. 81, pp. 27-33. 2016.
  10. TTH. Loan, DN. Phung, TT. Thanh, TA. Khnah, MV. Nhon, "Monte Carlo simulation of HPGe detectorresponse function with using MCNP code," Communication Physics, Vol. 17, No 1, pp. 59-64, 2007.