DOI QR코드

DOI QR Code

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings

쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상

  • Kweon, Dae Cheol (Department of Radiological Science, College of Bioecological Health, Shinhan University)
  • 권대철 (신한대학교 바이오생태보건대학 방사선학과)
  • Received : 2018.11.11
  • Accepted : 2018.12.31
  • Published : 2018.12.30

Abstract

To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.

MDCT의 3D 유용성을 입증하기 위해 쇄골하 혈전증을 수반한 73세 남자 환자를 대상으로 MIP, 볼륨렌더링, MPR의 3D 영상을 획득하여 쇄골하동맥의 혈전증을 명확하게 탐지하고 위치를 확인하여 임상에서 기초자료를 제공하여 환자의 진단 및 치료에 적용하고자한다. 스캔 데이터를 3차원 CT영상인 MIP, 볼륨렌더링, curve multiplanar reformation (MPR), virtual endoscopy 영상을 획득하였다. CT검사 환자의 데이터를 3D 프로그램으로 전송한 영상에서 3D 프로그램에서 측정한 상행대동맥은 364.28 HU, 좌총경동맥 413.77 HU, 좌쇄골하동맥 15.72 HU로 낮게 산출되었다. MIP coronal 영상으로 좌측의 쇄골하동맥의 혈전으로 폐쇄를 정확하게 보여주고 있다. 볼륨렌더링 3차원 영상으로 투과도 100%, 87-1265 HU를 적용하여 쇄골하동맥과 뼈를 동시에 묘출하고 있으며, 좌측 쇄골하동맥의 폐쇄 영상을 선명하게 보여주었으며 coronal curved MPR 및 sagittal curved MPR 영상으로 혈전의 의한 쇄골하동맥의 폐쇄를 3D 영상 처리 기능을 이용하여 정확하게 묘출하고 있다. 혈전에 의한 쇄골하동맥 폐쇄 증상 환자를 MDCT로 스캔하여 3D 영상 기법을 응용하여 쇄골하동맥의 폐쇄를 확인할 수 있어 임상에서 3D 기법을 응용하여 적절하게 진단에 적용할 수 있다.

Keywords

BSSHB5_2018_v12n7_813_f0001.png 이미지

Fig. 1. Contrast enhanced CT angiography. In the axial CT HU measured of transverse contrast-enhanced CT.

BSSHB5_2018_v12n7_813_f0002.png 이미지

Fig. 2. Three-dimensional CT angiography using the maximum intensity projection technique shows an occlusion in the left subclavian artery (arrow).

BSSHB5_2018_v12n7_813_f0003.png 이미지

Fig. 3. Volume rendering was optimized for the reconstruction: 100% opacity level, 87-1265 HU threshold range.

BSSHB5_2018_v12n7_813_f0004.png 이미지

Fig. 4. a. Three-dimensional volume rendering of the CT data performed at the time of the study demonstrates occlusion of left subclavian artery. b. Coronal curved multiplanar reformations (MPR) shows a left subclavian artery occlusion (arrow).

BSSHB5_2018_v12n7_813_f0005.png 이미지

Fig. 5. a. Volume rendering CT image was optimized for the reconstruction. b. Sagittal curved MPR shows a left subclavian artery occlusion (arrow).

BSSHB5_2018_v12n7_813_f0006.png 이미지

Fig. 6. Volume rendering CT image virtual enddoscopy and sagittal curved MPR shows image.

References

  1. N. Boas, F. Desmoucelle, V. Bernadet, J. C. Franceschi, "Rare cause of acute ischemia of the right upper extremity: thrombosis of a retroesophageal subclavian artery," Annals Vascular Surgery, Vol. 16, No. 3, pp. 387-390, 2002. https://doi.org/10.1007/s10016-001-0232-3
  2. M. F. Fillinger, R. K. Greenberg, J. F. McKinsey, E. L. Chaikof, Society for Vascular Surgery Ad Hoc Committee on TEVAR Reporting Standards, "Reporting standards for thoracic endovascular aortic repair (TEVAR)," Journal of Vascular Surgery, Vol. 52, No. 4, pp. 1022-1033, 2010. https://doi.org/10.1016/j.jvs.2010.07.008
  3. M. D'Addato, L. Pedrini, "Non-cardiac causes of acute ischemia in the arms," Journal of Maladies Vascularies, Vol. 21, No. 5, pp. 303-307, 1996.
  4. I. K. Indrajit, J. D. Souza, V. S. Bedi, R. Pant, "Impact of multidetector CT on 3D CT angiography," Medical Journal Armed Forces India., Vol. 61, No. 4, pp. 360-363, 2005. https://doi.org/10.1016/S0377-1237(05)80068-1
  5. P. T. Johnson, E. J. Halpern, B. S. Kuszyk, D. G. Heath DG et al. "Renal artery stenosis: CT angiography-comparison of real-time volume-rendering and maximum intensity projection algorithms," Radiology, Vol. 211, No. 2, pp. 337-343, 1999. https://doi.org/10.1148/radiology.211.2.r99ap17337
  6. B. A. Urban, L. E. Ratner, E. K. Fishman, "Three dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications," Radiographics, Vol. 21, pp. 373-386, 2001. https://doi.org/10.1148/radiographics.21.2.g01mr19373
  7. J. S. Gong, J. M. Xu, "Role of curved planar reformations using multidetector spiral CT in diagnosis of pancreatic and peripancreatic diseases," World Journal of Gastroenterology, Vol. 10, No. 13, pp. 1943-1947, 2004. https://doi.org/10.3748/wjg.v10.i13.1943
  8. E. Criado, R. Berguer, L. Greenfield, "The spectrum of arterial compression at the thoracic outlet," Journal of Vascular Surgery, Vol. 52, No. 2, pp. 406-411, 2010. https://doi.org/10.1016/j.jvs.2010.03.009
  9. R. Walsh, D. Chowdhury, D. Kholwadwala, "An unusual vascular ring: origin of a ductus arteriosus from an aberrant right subclavian artery in a neonate with tetralogy of Fallot," Images in Paediatric Cardiology, Vol. 12, No. 2, pp. 1-4, 2010.
  10. C. S. Jones, F. Verde, P. T. Johnson, E. K. Fishman, "Nontraumatic Subclavian Artery Abnormalities: Spectrum of MDCT Findings," American Journal of Roentgenology, Vol. 207, No. 2, pp. 434-441, 2016. https://doi.org/10.2214/AJR.15.15685
  11. E. Tong, T. Rizvi, K. D. Hagspiel, "Complex aortic arch anomaly: Right aortic arch with aberrant left subclavian artery, fenestrated proximal right and duplicated proximal left vertebral arteries-CT angiography findings and review of the literature," Neuroradiology Journal, Vol. 28, No. 4, pp. 396-403, 2015. https://doi.org/10.1177/1971400915598075
  12. M. Y. Yoo, S. Park, H. J. Jang, H. Y. Lee, D. C. Kweon, "Comparison of image quality and dose according to the arm positioning in the chest CT," Journal of Korean Society of Radiology, Vol. 8, No. 2. pp. 75-79, 2014. https://doi.org/10.7742/jksr.2014.8.2.75
  13. V. L. Gisbert, J. J. Hollerman, A. L. Ney, G. L. Rockswold, E. Ruiz, D. M. Jacobs, M. P. Bubrick, "Incidence and diagnosis of C7-T1 fractures and subluxations in multiple-trauma patients: evaluation of the advanced trauma life support guidelines," Surgery, Vol. 106, No. 4, pp. 708-709, 1989.
  14. S. Achenbach, W. Moshage, D. Ropers, K. Bachmann, "Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries," American Journal of Roentgenology, Vol. 170, No. 4, pp. 895-899, 1998. https://doi.org/10.2214/ajr.170.4.9530029
  15. B. S. Kuzyk, D. G. Health, D. R. Ney, D. A. Bluemke, B. A. Urban, T. P. Chambers, E. K. Eishman, "CT angiography with volume rendering imaging findings," American Journal of Roentgenology, Vol. 165, No. 2, pp. 445-448, 1995. https://doi.org/10.2214/ajr.165.2.7618574
  16. D. D. Cody, "APM/RSNA Physics Tutorial for Residents: Topics in CT: Image processing in CT," Radiographics, Vol. 22, No. 5, pp. 1255-1268, 2002. https://doi.org/10.1148/radiographics.22.5.g02se041255
  17. P. A. Smith, D. G. Heath, E. K. Fishman, "Virtual angioscopy using spiral CT and real-time interactive volume rendering techniques," Journal of Computer Assisted Tomography, Vol. 22, No. 2, pp. 212-214, 1998. https://doi.org/10.1097/00004728-199803000-00009