DOI QR코드

DOI QR Code

Monte-carlo Simulation for X-ray Photon Counting using MPPC Arrays

배열형 실리콘광증배소자를 이용한 포톤 카운팅 검출기 설계를 위한 몬테칼로 시뮬레이션 연구

  • Lee, Seung-Jae (Department of Radiological Science, Dongseo University) ;
  • Baek, Cheol-Ha (Department of Radiological Science, Kangwon National University)
  • 이승재 (동서대학교 방사선학과) ;
  • 백철하 (강원대학교 보건과학대학 방사선학과)
  • Received : 2018.10.05
  • Accepted : 2018.12.31
  • Published : 2018.12.30

Abstract

Studies for counting and detecting X-rays for the improvement of image quality and material analysis are active. In this work, the detector for X-ray photon counting was designed using Multi-pixel photon counter (MPPC) array and the detector characteristics were evaluated through simulation. Geant4 Application for Tomographic Emission (GATE) was used to obtain the position where the X-ray and the scintillation interacted, and this position was used as the light generation position of DETECT2000. 0.5 mm and 1 mm thick Gadolinium Aluminium Gallium Garnet (GAGG) scintillators were used and the light generated through a $4{\times}4$ array of MPPCs was acquired. The spatial resolution of the designed detector was evaluated by reconstructed image using the light signal acquired for each channel. We obtained images of more than 2 lp/mm in both 0.5 mm and 1 mm thick GAGG scintillation. When this detector is used in a X-ray system, a low-cost system capable of photon counting can be made.

영상의 질 향상과 물질 분석 등을 위해 엑스선을 카운팅하여 검출하기 위한 연구가 활발하다. 본 연구에서는 MPPC 어레이를 사용하여 엑스선 포톤 카운팅을 위한 검출기를 설계하였고, 시뮬레이션을 통해 검출기 특성을 평가하였다. GATE를 사용하여 엑스선과 섬광체와 반응한 위치 정보를 획득하였고, 이 정보를 DETECT2000의 빛 발생 위치로 사용하였다. 0.5 mm와 1 mm 두께의 GAGG 섬광체를 사용하였으며, $4{\times}4$ 어레이의 MPPC를 통해 발생된 빛을 획득하였다. 각 채널별로 획득한 빛의 신호를 통해 영상을 재구성하여 설계한 검출기의 분해능을 확인하였다. 0.5 mm와 1 mm 두께의 GAGG 섬광체에서 모두 2 lp/mm 이상의 영상을 획득하였다. 본 검출기를 엑스선 시스템에 사용할 경우 포톤 카운팅이 가능한 저비용의 시스템을 구축할 수 있을 것이다.

Keywords

BSSHB5_2018_v12n7_929_f0001.png 이미지

Fig. 1. Geometry of GATE simulation.

BSSHB5_2018_v12n7_929_f0002.png 이미지

Fig. 2. Geometry of DETECT2000 simulation.

BSSHB5_2018_v12n7_929_f0003.png 이미지

Fig. 3. Reconstruction images for several slit phantoms in 0.5 and 1 mm GAGG.

BSSHB5_2018_v12n7_929_f0004.png 이미지

Fig. 4. Profiles for several reconstruction images in 0.5 and 1 mm GAGG.

BSSHB5_2018_v12n7_929_f0005.png 이미지

Fig. 5. Light distribution in 0.5 and 1 mm GAGG.

References

  1. P. M. Shikhaliev, S. G. Fritz, J. W. Chapman, "Photon counting multienergy x-ray imaging: Effect of the characteristic x-rays on detector performance," Medical Physics, Vol. 36, No. 11, pp. 5107-5119, 2009. https://doi.org/10.1118/1.3245875
  2. H. Ding, M. J. Klopfer, J. L. Ducote, F. Masaki, S. Molloi, "Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study," Radiology, Vol. 272, No. 3, pp. 731-738, 2014. https://doi.org/10.1148/radiol.14132732
  3. O. Hagiwara, M. Watanabe, E. Sato, H. Matsukiyo, A. Osawa, T. Enomoto, J. Nagao, S. Sato, A. Ogawa, J. Onagawa, "Energy-discrimination X-ray computed tomography system utilizing a silicon-PIN detector and its application to 2.0-keV-width k-edge imaging," Nuclear Instruments and Methods in Physics Research A., Vol. 638, No. 1, pp. 156-170, 2011.
  4. Y. Arakawa, E. Sato, H. Kogita, T. Hamaya, S. Nihei, W. Numahata, S. Kami, Y. Oda, O. Hagiwara, H. Matsukiyo, A. Osawa, T. Enomoto, M. Watanabe, S. Kusachi, S. Sato, A. Ogawa, "Investigation of X-ray photon-counting using ceramic-substrate silicon diode and its application to gadolinium imaging," Japanese Journal of Applied Physics, Vol. 53, No. 7, pp. 72201, 2014. https://doi.org/10.7567/JJAP.53.072201
  5. E. A. Babichev, S. E. Baru, D. N. Grigoriev, V. P. Oleynikov, V. V. Porosev, G. A. Savinov, S. Callier, "SiPM based photon counting detector for scanning digital radiography," Journal of Instrumentation, Vol. 10, No. C03002, pp. 1-8, 2015.
  6. M. Akiba, K. Inagaki, K. Tsujino, "Photon number resolving SiPM detector with 1 GHz count rate," Optics Express, Vol. 20, No. 3, pp. 2779-2788, 2012. https://doi.org/10.1364/OE.20.002779
  7. Y. Oda, E. Sato, A. Abudurexiti, O. Hagiwara, A. Osawa, H. Matsukiyo, To. Enomoto, M, Watanabe, S. Kusachi, S. Sugimura, H. Endo, S. Sato, A. Ogawa, J. Onagawa, "Mcps-range photon counting X-ray computed tomography system utilizing an oscillating linear-YAP(Ce) photon detector," Nuclear Instruments and Methods in Physics Research A., Vol. 643, No. 1, pp. 69-74, 2011. https://doi.org/10.1016/j.nima.2011.04.001
  8. H. Sabet, G. Prekas, M. Breen, H. B. Bhandari, P. Nickerson, G. Dergerian, F. Robertson, H. Kudrolli, S. Cool, V. V. Nagarkar, "High-Performance and Cost-Effective Detector Using Microcolumnar CsI:Tl and SiPM," IEEE Transactions on Nuclear Science, Vol. 59, No. 5. pp. 1841-1849, 2012. https://doi.org/10.1109/TNS.2012.2202248
  9. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, "GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and Radiotherapy," Physics in Medicine and Biology, Vol. 56, No. 4, pp. 881-901, 2011. https://doi.org/10.1088/0031-9155/56/4/001
  10. F. Cayouette, D. Laurendeau, C. Moisan, "DETECT2000: an improved Monte-Carlo simulator for the computer aided design of photon sensing devices," Proceedings of SPIE, Quebec, Vol. 4833, pp. 69-76, 2003.
  11. http://www.epic-crystal.com/shop_reviews/gaggce-scintillator
  12. https://www.hamamatsu.com/resources/pdf/ssd/s13361-2050_series_kapd1053e.pdf