DOI QR코드

DOI QR Code

Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller

속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현

  • Received : 2018.08.16
  • Accepted : 2018.09.08
  • Published : 2018.12.31

Abstract

This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

Keywords

OBDDBE_2018_v13n6_321_f0001.png 이미지

그림 1. 쿼드로터 좌표 시스템 Fig. 1 Coordinate system for quadrotor

OBDDBE_2018_v13n6_321_f0002.png 이미지

그림 2. 쿼드로터 무인항공기의 구성 Fig. 2 Configuration of our quadrotor UAV

OBDDBE_2018_v13n6_321_f0003.png 이미지

그림 3. 쿼드로터 무인항공기의 블록 다이어그램 Fig. 3 Block diagram of our quadrotor UAV

OBDDBE_2018_v13n6_321_f0004.png 이미지

그림 4. 속도 명령 제어시스템의 블록 다이어그램 Fig. 4 Block diagram of the velocity command control system

OBDDBE_2018_v13n6_321_f0005.png 이미지

그림 5. 실험에 사용된 6 × 6 아르코 마커 패턴 Fig. 5 Employed pattern of 6 × 6 Aruco marker

OBDDBE_2018_v13n6_321_f0006.png 이미지

그림 6. 사용된 마커 사양 및 거리추정 실험 결과 Fig. 6 Specification of the employed Aruco marker and a distance estimation result

OBDDBE_2018_v13n6_321_f0007.png 이미지

그림 7. 쿼드로터 무인기와 마커의 상대위치 상면도 Fig. 7 Top view of quadrotor UAV and marker

OBDDBE_2018_v13n6_321_f0008.png 이미지

그림 8. 쿼드로터 무인기와 마커의 상대위치 측면도 Fig. 8 Side view of quadrotor UAV and marker

OBDDBE_2018_v13n6_321_f0009.png 이미지

그림 9. 시험비행에 사용된 자동차 주행 트랙 Fig. 9 Vehicle track used for test flight

OBDDBE_2018_v13n6_321_f0010.png 이미지

그림 11. 3차원 표적 추종 궤적 Fig. 11 Three dimensional trajectory moving marker tracking result

OBDDBE_2018_v13n6_321_f0011.png 이미지

그림 12. 움직이는 표적 추종 시험비행 결과 Fig. 12 Flight test result of the moving target tracking

OBDDBE_2018_v13n6_321_f0012.png 이미지

그림 13. 시간에 따른 상대위치 및 속도 정보 Fig. 13 Time histories of the relative position and velocity information

OBDDBE_2018_v13n6_321_f0013.png 이미지

그림 10. 2차원 표적 추종 궤적 Fig. 10 Two dimensional trajectory moving marker tracking result

표 1. 쿼드로터 UAV의 사양 Table 1. Specification of our quadrotor UAV

OBDDBE_2018_v13n6_321_t0001.png 이미지

References

  1. S. Gupte, P. Mohandas, J. Conrad, "A Survey of Quadrotor Unmanned Aerial Vehicles," in Proceedings of IEEE Southeastcon Conference, pp. 1-6, 2012.
  2. S.J. Lee, Y.S. Choi, "Comparison of Topographic Surveying Results Using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone)," Journal of the Tunnel and Underground Space, Vol. 26, No. 1, pp. 24-31, 2016. (in Korean) https://doi.org/10.7474/TUS.2016.26.1.024
  3. H. Kim, H.S. Jeong, K.T. Chong, D.J. Lee, "Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots," Journal of Transactions of the Korean Society of Mechanical Engineers, Vol. 38, No. 2, pp. 137-148, 2014. (in Korean) https://doi.org/10.3795/KSME-A.2014.38.2.137
  4. A. Basci, K. Can, K. Orman, A. Derdiyok, "Trajectory Tracking Control of a Four Rotor Unmanned Aerial Vehicle Based on Continuous Sliding Mode Controller," Journal of the Elektronika ir Elektrotechnika, Vol. 23, No. 3, pp. 12-19, 2017.
  5. E. Frazzoli, M. Dahleh, E. Feron, "Trajectory Tracking Control Design for Autonomous Helicopters Using a Backstepping Algorithm," Proceedings of the American Control Conference, pp. 4102-4107, 2000.
  6. Y.D. Jung, S.W. Cho, H.C. Shim, "Trajectory Tracking Controller Design Using $L_1$ Adaptive Control for Multirotor UAVs," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 10, pp. 842-850, 2014. (in Korean) https://doi.org/10.5139/JKSAS.2014.42.10.842
  7. M.J. Kim, S.B. Bae, W.K. Baek, M.G. Jo, K. N. Ha, "A Way-Point Tracking of Hovering AUV by PID control," Journal of IEMEK J. Embed. Sys. Appl., Vol. 10, No. 4, pp. 257-264, 2015. (in Korean)
  8. S. Bouabdallah, R. Siegwart, "Towards Intelligent Miniature Flyingrobots," Journal of Tractsaction in Advanced Robotics, Vol. 25, pp. 429-440, 2006.
  9. L. Feng, Q. Fangchao, "Research on the Hardware Structure Characteristics and EKF Filtering Algorithm of the Autopilot PIXHAWK," Proceedings of International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp. 228-231. 2016.
  10. S. Garrido-Jurado, R. Munoz-Salinas, F.J. Madrid-Cuevas, M.J. Marin-Jimenez, "Automatic Generation and Detection of Highly Reliable Fiducial Markers Under Occlusion," Journal of Pattern Recognition, Vol. 47, No. 6, pp. 2280-2292, 2014. https://doi.org/10.1016/j.patcog.2014.01.005
  11. A. Roberts, W.N. Browne, C. Hollitt, "Accurate Marker Based Distance Measurement With Single Camera," Proceedings of IEEE International Conference on Image and Vision Computing, pp. 1-6, 2015.
  12. Avaliable on https://docs.opencv.org/master/d9/d6a/group__aruco.html