DOI QR코드

DOI QR Code

희귀 세포 샘플 준비를 위한 마이크로 폴리머 칩 플랫폼 제작 및 활용

Fabrication and Application of Micro Polymer Chip Platform for Rare Cell Sample Preparation

  • 박태현 (경남대학교 기계공학부)
  • Park, Taehyun (School of Mechanical Engineering, Kyungnam University)
  • 투고 : 2018.02.14
  • 심사 : 2018.03.20
  • 발행 : 2018.03.28

초록

본 논문에서는 정확한 수의 희귀 세포 포집 및 이송을 위한 마이크로 폴리머 칩 플랫폼의 디자인과 제작, 그리고 프로토콜을 소개하고 있다. 본 플랫폼과 프로토콜은 기존의 통계학적인 샘플 준비 방법인 희석(Dilution)의 한계와 고가이며 형광염색이 요구되는 유세포분석기(Fluorescence activated cell sorter)의 단점을 극복하였다. 타켓 세포를 선택적으로 쉽고 간단하게 채집할 수 있으며 채집되는 세포의 수는 시각적으로 검증되므로 매우 정확한 방법이다. 또한, 채집된 세포들은 마이크로 챔버 등의 원하는 곳으로 세포의 손실 없이 이송 또는 주입 시킬 수 있다. 본 연구는 암진단 등을 목적으로 하는 칩 속의 실험실(Lab on a chip) 등에 필요한 희귀 세포 샘플 준비를 위해 활용 될 수 있을 뿐만 아니라 세포분석을 위한 싱글/더블/다수 세포 샘플의 준비에도 활용 가능하다. 본 논문에서 제시하는 세포 채집 플랫폼과 프로토콜을 검증하기 위해 5개의 인간 암세포(MCF-7)를 채집한 뒤 세포계수기(Hemocytometer) 안으로 주입시켜 세포의 수를 확인하였다.

In this paper, a new micro polymer chip platform and protocol were developed for rare cell sample preparation. The proposed platform and protocol overcome the current limitation of the dilution method which is based on statistics and the FACS method which expensive and requires fluorescence staining. It allows collecting exact number of target cells simply and selectively because the cells are visually confirmed during the collecting process. The collected cells can be transported or spiked into a desired locations, such as a microchamber, without cell loss. This research may applicable not only to a rare cell sample preparation for Lab on a Chip cancer diagnosis, but also to a single/double/multiple cell sample preparation for a cell analysis field. To verify this platform and protocol, five human breast cancer cells (MCF-7) were collected and transported into a hemocytometer chamber.

키워드

참고문헌

  1. L. Zhu, X. L. Peh, H. M. Ji, C. Y. Teo, H. H. Feng, & W. T. Liu. (2007). Cell loss in integrated microfluidic device, Biomedical Microdevices, 9(5), 745-750. DOI : 10.1007/s10544-007-9085-z
  2. Y. Kim et al. (2007). Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator, Review of Scientific Instruments, 78(7), 074301. DOI : 10.1063/1.2751414
  3. A. L. Allan & M. Keeney. (2010). Circulating tumor cell analysis: Technical and statistical considerations for application to the clinic, Journal of Oncology, 2010. DOI : 10.1155/2010/426218
  4. A. G. J. Tibbe, M. C. Miller &, L. W. Terstappen. (2007). Statistical considerations for enumeration of circulating tumor cells, Cytometry Part A, 71(3), 154-162. DOI : 10.1002/cyto.a.20369
  5. M. Shackleton. (2010). Normal stem cells and cancer stem cells: Similar and different, Seminars in Cancer Biology, 20(2), 85-92. DOI : 10.1016/j.semcancer.2010.04.002
  6. F. Guo et al. (2013). Probing cell-cell communication with microfluidic devices, Lab on a Chip, 13(16), 3152-3162. DOI : 10.1039/c3lc90067c
  7. J. P. Frimat et al. (2011). A microfluidic array with cellular valving for single cell co-culture, Lab on a Chip, 11(2), 231-237. DOI : 10.1039/c0lc00172d
  8. A. Gross, J. Schoendube, S. Zimmermann, M. Steeb, R. Zengerle, & P. Koltay. (2015). Technologies for single-cell isolation, International Journal of Molecular Sciences, 16(8), 16897-16919. DOI : 10.3390/ijms160816897
  9. J. Y. Park, S. Takayama, & S. H. Lee. (2010). Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems, Integrative Biology, 2(5-6), 229-240. DOI : 10.1039/c000442a
  10. K. Eyer, P. Kuhn, C. Hanke, & P. S. Dittrich. (2012). A microchamber array for single cell isolation and analysis of intracellular biomolecules, Lab on a Chip, 12(4), 765-772. DOI : 10.1039/c2lc20876h
  11. B. F. Brehm-Stecher & E. A. Johnson. (2004). Single-cell microbiology: Tools, technologies, and applications, Microbiology and Molecular Biology Reviews, 68(3), 538-559. DOI : 10.1128/MMBR.68.3.538-559.2004
  12. C. Liberal et al. (2013). Integrated microfluidic device for single-cell trapping and spectroscopy, Scientific reports, 3, 1258. DOI : 10.1038/srep01258
  13. A. R. Wheeler et al. (2003). Microfluidic device for single-cell analysis, Analytical Chemistry, 75(14), 3581-3586. DOI : 10.1021/ac0340758
  14. C. H. Lin et al. (2015). A microfluidic dual-well device for high-throughput single-cell capture and culture, Lab on a Chip, 15(14), 2928-2938. DOI : 10.1039/c5lc00541h
  15. T. Gerhardt, S. Woo, & H. Ma. (2011). Chromatographic behaviour of single cells in a microchannel with dynamic geometry, Lab on a Chip, 11(16), 2731-2737. DOI : 10.1039/c1lc20092e
  16. L. G. Villa-Diaz et al. (2009). Microfluidic culture of single human embryonic stem cell colonies, Lab on a Chip, 9(12), 1749-1755. DOI : 10.1039/b820380f
  17. H. Shadpour, J. S. Zawistowski, A. Herman, K. Hahn, & N. L. Allbritton. (2011). Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors, Analytica Chimica Acta, 696(1-2), 101-107. DOI : 10.1016/j.aca.2011.04.012
  18. N. M. Badders, C. M. Alexander, H. Yu, & D. J. Beebe. (2008). Quantification of small cell numbers with a microchannel device, BioTechniques, 45(3), 321-325. DOI : 10.2144/000112906
  19. D. D. Carlo, L. Y. Wu, & L. P. Lee. (2006). Dynamic single cell culture array, Lab on a Chip, 6(11), 1445-1449. DOI : 10.1039/b605937f