DOI QR코드

DOI QR Code

종양치료용 고주파 열치료 인체적용 시뮬레이션

Simulation of the High Frequency Hyperthermia for Tumor Treatment

  • 투고 : 2018.02.09
  • 심사 : 2018.03.20
  • 발행 : 2018.03.28

초록

고주파 열치료법은 1MHz 이상의 RF 고주파 전류를 전극을 통해 종양조직으로 공급, 가열하여 종양조직의 온도를 $42.0^{\circ}C$이상으로 상승시켜 열괴사시키는 치료법으로 알려져 있다. 인체 내에서 전자기에너지의 흡수와 전달을 위한 수학적으로 모델링과 생물학적인 신체조직의 온도 필드 분포의 해석과 평가를 통해 생체조직을 구성하는 분자들이 진동하면서 서로 마찰되어 열에너지로 전환되는 과정을 분석할 수 있다. 본 논문에서는 3차원 모델의 기하학적 형상의 성인남자 표준모델을 토대로 인체모형을 설정하고, 계산은 유한체적법 코드를 활용하였다. 인체에 전극을 장착하여 외부에서 유도되는 자기장을 모사한 쥴열이 공급되는 것으로 가정하였고 이에 대한 온도분포를 0-1,200초 동안 해석하였다. 시뮬레이션의 결과, 전달된 에너지는 전극의 가장자리로부터 전극의 안쪽으로, 피부 표면으로부터 피하층으로 점진적으로 침투되어 폐종양세포에 전달되어 종양이 열괴사하는 과정을 확인할 수 있었다.

Hyperthermia supplies RF high-frequency energy above 1MHz to the tumor tissue through the electrodes. And the temperature of the tumor tissue is increased to $42^{\circ}C$ or more to cause thermal necrosis. A mathematical model can be derived a human body model for absorption and transmission of electromagnetic energy in the human model and It is possible to evaluate the distribution of temperature fields in biological tissues. In this paper, we build the human model based on the adult standard model of the geometric shape of the 3D model and use the FVM code. It is assumed that Joule heat is supplied to the anatomical model to simulate the magnetic field induced by the external electrode and the temperature distribution was analyzed for 0-1,200 seconds. As a result of the simulation, it was confirmed that the transferred energy progressively penetrates from the edge of the electrode to the pulmonary tumors and from the skin surface to the subcutaneous layer.

키워드

참고문헌

  1. P. GAS. (2010). Temperature inside tumor as time function in RF hyperthermia. PRZEGLAD ELEKTROTECHNICZNY, .42-45, .
  2. A. Lakhssassi, E. Kengne, H. Semmaoui. (2010). Modifed pennes equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Natural Science, 2(12), 1375-1385. https://doi.org/10.4236/ns.2010.212168
  3. K. Kuroda & N. Tsuda. (1996). An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE Trans. Biomed. Eng., 43, 1029-1037. https://doi.org/10.1109/10.536904
  4. R. B. Roemer. (1991). Optimal power deposition in hyperthermia I. The treatment goal: the ideal temperature distribution: the role of large blood vessels. Int. J. Hyperthermia, 7, 317-341. https://doi.org/10.3109/02656739109004999
  5. D. M. Sullivan. (1990). Three dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method. IEEE Trans. Microwave Theory Tech., 38, 204-211. https://doi.org/10.1109/22.46431
  6. J. Cooper & S. McKeever. (2008). A model-driven approach to automatic conversion of physical units. Software-Practice and Experience, 38(4), 337-359. https://doi.org/10.1002/spe.828
  7. D. Kohn & N. Le Novere. (2008). SED-ML An XML Format for the Implementation of the MIASE Guidelines. in Proc. 6th Int. Conf. Computational Methods in Systems Biology, Rostock, Germany, LNBI 5307, 176-190.
  8. J. Cooper. (2009). Automatic Validation and Optimization of Biological Models, University of Oxford, Oxford, UK.
  9. G. F. Baronzio & E. D. Hage. (2006) Hyperthermia in Cancer Treatment: A Primer. : Springer
  10. H. H. Pennes. (1998). Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl Physiol, 85, 5-34. https://doi.org/10.1152/jappl.1998.85.1.5
  11. M. Raoof, B. T. Cisneros, S. J. Corr, F.. Palalon, S. A. Curley & N. V. Koshkina. (2013). Tumor Selective Hyperthermia Induced by Short-Wave Capacitively-Coupled RF Electric-Fields. PLoS ONE.
  12. B. Fernando B. A. Antonello, & A. L. Giorgio. (1995). SAR Optimization in a Phased Array Radiofrequency Hyperthermia System. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 42(12), 1201-1207. https://doi.org/10.1109/10.476127
  13. A. Marwaha, S. Maini & S. Marwaha. (2009). Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer. Proceedings of the COMSOL Conference 2009 Bangalore.
  14. B. G. Jung, J. W. Kim & B. H. Jeong. (2017). A Study of Structural Analysis Simulation for Squat Exercise Foot Plate. Journal of the Korea Convergence Society, 8(9), 365-372. https://doi.org/10.15207/JKCS.2017.8.9.365
  15. L. Ferras, N. Ford, M. Morgado, M. S. Rebelo & J. M. Nobrega. (2015). Fractional Pennes bioheat equation: Theoretical and numerical studies. Fractional Calculus and Applied Analysis -Fract. Calc. Appl. Anal, 1080-1106.