DOI QR코드

DOI QR Code

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung (Department of Biotechnology, Pukyong National University) ;
  • Nguyen, Trung Hau (Department of Biotechnology, Pukyong National University) ;
  • Sukwong, Pailin (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Teak (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2017.08.18
  • Accepted : 2017.12.03
  • Published : 2018.03.28

Abstract

The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.

Keywords

References

  1. Wang Z, Xiao J, Fan S, Li Y, Liu X, Liu D. 2015. Who made the world's largest green tide in China? - an integrated study on the initiation and early development of the green tide in Yellow Sea. Limnol. Oceanogr. 60: 1105-1117. https://doi.org/10.1002/lno.10083
  2. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42: 1105-1118. https://doi.org/10.4319/lo.1997.42.5_part_2.1105
  3. Son YB, Min JE, Ryu JH. 2012. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data. Ocean Sci. J. 47: 359-375. https://doi.org/10.1007/s12601-012-0034-2
  4. Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zou J, et al. 2011. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol. Res. 26: 477. https://doi.org/10.1007/s11284-011-0821-8
  5. Ong HC, Jan BM, Tong CW, Fauzi H, Chen WH. 2016. Effects of organosolv pretreatment and acid hydrolysis on palm empty fruit bunch (PEFB) as bioethanol feedstock. Biomass Bioenergy 95: 78-83. https://doi.org/10.1016/j.biombioe.2016.09.008
  6. Werner K, Pommer L, Brostrom M. 2014. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 110: 130-137. https://doi.org/10.1016/j.jaap.2014.08.013
  7. Saha BC, Yoshida T, Cotta MA, Sonomoto K. 2013. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crops Prod. 44: 367-372. https://doi.org/10.1016/j.indcrop.2012.11.025
  8. Liu XL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345-352. https://doi.org/10.1007/s10295-004-0148-3
  9. Quain DE, Boulton CA. 1987. Growth and metabolism of mannitol by strains of S. cerevisiae. J. Gen. Microbiol. 133: 1675-1684.
  10. Delgenes JP, Moletta R, Navarro JM. 1988. The ethanol tolerance of Pichia stipitis Y 7124 grown on a D-xylose, D-glucose and L-arabinose mixture. J. Ferment. Technol. 66: 417-422.
  11. Lee H, Schneider H. 1987. Ethanol production from xylitol and some other polyols by Pichia angophorae. Biotechnol. Lett. 9: 581-584. https://doi.org/10.1007/BF01026665
  12. Williams S. 1987. Official Methods of Analysis of the Association of Official Analytical Chemists. 14th Ed. Arlington, VA.
  13. Ra CH, Nguyen TH, Jeong GT, Kim SK. 2016. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour. Technol. 209: 66-72. https://doi.org/10.1016/j.biortech.2016.02.106
  14. Shuler ML, Kargi F. 2002. Bioprocess Engineering, pp. 475-479. 2nd Ed. Prentice Hall, New York.
  15. Meinita MDN, Marhaeni B, Winanto T, Setyaningsih D, Hong YK. 2015. Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. Ind. Eng. Chem. 27: 108-114. https://doi.org/10.1016/j.jiec.2014.12.024
  16. Ahn DJ, Kim SK, Yun HS. 2012. Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 35: 35-41.
  17. Borines MG, Rizalinda LL, Joel LC. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29. https://doi.org/10.1016/j.biortech.2013.03.108
  18. Chandel AK, Narasu ML, Rudravaram R, Pogaku R, Rao LV. 2009. Bioconversion of de-oiled rice bran (DORB) hemicellulosic hydrolysate into ethanol by Pichia stipitis NCM3499 under optimized conditions. J. Food Eng. 2: 1-12.
  19. Rouhollah H , Iraj N , Giti E , Sorah A. 2007. Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiae, and an isolated xylose fermenting Kluyveromyces marxianus and their cocultures. Afr. J. Biotechnol. 6: 1110-1114.
  20. Rizzi M, Erlemann P, Bui-Thanh NA, Dellweg H. 1998. Xylose fermentation by yeasts. Appl. Microbiol. Biotechnol. 29: 148-154.
  21. Horn SJ, Aasen IM, Ostgaard K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249-254. https://doi.org/10.1038/sj.jim.7000065
  22. Rodrigues B, Lima-Costa ME, Constantino A, Raposo S, Felizardo C, Gonçalves D, et al. 2016. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Enzyme Microb. Technol. 92: 41-48. https://doi.org/10.1016/j.enzmictec.2016.06.012
  23. Hanly TJ, Michael AH. 2011. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108: 376-385. https://doi.org/10.1002/bit.22954
  24. Patle S, Banwari L. 2007. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett. 29: 1839-1843. https://doi.org/10.1007/s10529-007-9493-4
  25. Fu N, Peiris P, Markham J, Bavor J. 2009. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol. 45: 210-217. https://doi.org/10.1016/j.enzmictec.2009.04.006
  26. Chandel AK, Singh OV, Narasu ML, Rao LV. 2011. Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS 3. N. Biotechnol. 28: 593-599. https://doi.org/10.1016/j.nbt.2010.12.002

Cited by

  1. Optimization of hyper-thermal acid hydrolysis and enzymatic saccharification of Ascophyllum nodosum for ethanol production with mannitol-adapted yeasts vol.42, pp.8, 2018, https://doi.org/10.1007/s00449-019-02123-8
  2. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042