DOI QR코드

DOI QR Code

Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol

  • Received : 2017.10.26
  • Accepted : 2017.12.07
  • Published : 2018.03.28

Abstract

Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis, which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.

Keywords

References

  1. Taylor MB, Juni E. 1960. Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim. Biophys. Acta 39: 448-457. https://doi.org/10.1016/0006-3002(60)90197-9
  2. Ge L, Wu XM, Chen JW, Wu JL. 2011. A new method for industrial production of 2,3-butanediol. J. Biomater. Nanobiotechnol. 2: 335-336. https://doi.org/10.4236/jbnb.2011.23041
  3. Ji XJ, Huang H, Ouyang PK. 2011. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
  4. Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, et al. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758. https://doi.org/10.1007/s00253-009-2222-2
  5. Syu MJ. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18. https://doi.org/10.1007/s002530000486
  6. Transparency Market Research. 2018. Butanediol (1,4 BDO & 2,3 BDO), 1,3 butadiene and methyl ethyl ketone (MEK) market: applications (THF, PU, PBT, SBR, ABS, NBR etc.), bio-based alternatives, downstream potential, market size and forecast, 2010-2018. Available at https://www.transparencymarketresearch.com/pressrelease/butanediol-butadiene- and-mek-market.htm.
  7. Bialkowska AM. 2016. Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J. Microbiol. Biotechnol. 32: 200. https://doi.org/10.1007/s11274-016-2161-x
  8. Choi S, Song CW, Shin JH, Lee SY. 2015. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28: 223-239. https://doi.org/10.1016/j.ymben.2014.12.007
  9. Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, et al. 2015. Erratum to: Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 42: 977. https://doi.org/10.1007/s10295-015-1610-0
  10. Rahman MS, Xu CC, Ma K, Nanda M, Qin W. 2017. High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int. J. Biol. Sci. 13: 308-318. https://doi.org/10.7150/ijbs.17594
  11. Zhang CY, Peng XP, Li W, Guo XW, Xiao DG. 2014. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue. Biotechnol. Appl. Biochem. 61: 501-509.
  12. Li L, Zhang L, Li K, Wang Y, Gao C, Han B, et al. 2013. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6: 123.
  13. Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V. 2012. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour. Technol. 124: 237-244. https://doi.org/10.1016/j.biortech.2012.08.047
  14. Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, et al. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658.
  15. Kallbach M, Horn S, Kuenz A, Prusse U. 2017. Screening of novel bacteria for the 2,3-butanediol production. Appl. Microbiol. Biotechnol. 101: 1025-1033. https://doi.org/10.1007/s00253-016-7849-1
  16. Bai Y, D'Aoust F, Smith DL, Driscoll BT. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238. https://doi.org/10.1139/w02-014
  17. Damgaard PH, Larsen HD, Hansen BM, Bresciani J, Jorgensen K. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23: 146-150.
  18. Travers RS, Martin PA, Reichelderfer CF. 1987. Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53: 1263-1266.
  19. Hollander R, Bohmann J, Grewing B. 1982. The intensification of the Voges-Proskauer-reaction by fumarate. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 252: 316-323.
  20. Chevenet F, Brun C, Banuls AL, Jacq B, Chisten R. 2006. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7: 439. https://doi.org/10.1186/1471-2105-7-439
  21. Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. https://doi.org/10.1080/10635150390235520
  22. Buddingh GJ. 1974. Bergey's Manual of Determinative Bacteriology, 8th Ed. The Williams and Wilkins Company, Baltimore, MD.
  23. Park JM, Rathnasingh C, Song H. 2015. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J. Ind. Microbiol. Biotechnol. 42: 1419-1425 https://doi.org/10.1007/s10295-015-1648-z
  24. Choi JD, Jang YS, Cho JH, Seung DY, Lee SY, Papoutsakis ET, et al. 2013. Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. 18: 266-271. https://doi.org/10.1007/s12257-012-0619-8
  25. Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. https://doi.org/10.1128/CMR.00073-09
  26. Bosma EF, van de Weijer AH, van der Vlist L, de Vos WM, van der Oost J, van Kranenburg R. 2015. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Microb. Cell Fact. 14: 99. https://doi.org/10.1186/s12934-015-0286-5
  27. Edwards VH. 1970. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 12: 679-712. https://doi.org/10.1002/bit.260120504
  28. Huang HJ, Lin W, Ramaswamy S, Tschirner U. 2009. Process modeling of comprehensive integrated forest biorefinery - an integrated approach. Appl. Biochem. Biotechnol. 154: 26-37. https://doi.org/10.1007/s12010-008-8478-7
  29. Park JM, Song H, Lee HJ, Seung D. 2013. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 40: 1057-1066. https://doi.org/10.1007/s10295-013-1298-y
  30. Ge YS, Li K, Li LX, Gao C, Zhang LJ, Ma CQ, et al. 2016. Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem. 18: 4693-4703. https://doi.org/10.1039/C6GC01023G
  31. Kim DK, Park JM, Song H. 2016. Kinetic modeling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochem. Eng. J. 114: 94-100. https://doi.org/10.1016/j.bej.2016.06.021
  32. Beronio PB Jr, Tsao GT. 1993. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol. Bioeng. 42: 1263-1269. https://doi.org/10.1002/bit.260421102
  33. Fages J, Mulard D, Rouquet J, Wilhelm J. 1986. 2,3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, and by Bacillus polymyxa ATCC 12321. Optimization of kLa profile. Appl. Microbiol. Biotechnol. 25: 197-202.
  34. Zeng AP, Byun TG, Posten C, Deckwer WD. 1994. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol. Bioeng. 44: 1107-1114. https://doi.org/10.1002/bit.260440912
  35. Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658. https://doi.org/10.1002/jobm.201100033
  36. Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR. 1985. A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen-transport. Biotechnol. Bioeng. 27: 482-489. https://doi.org/10.1002/bit.260270413
  37. Nilegaonkar S, Bhosale S, Kshirsagar D, Kapadi A. 1992. Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J. Microbiol. Biotechnol. 8: 378-381.
  38. Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P. 2014. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour. Technol. 170: 256-261. https://doi.org/10.1016/j.biortech.2014.07.101
  39. Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, et al. 2013. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl. Microbiol. Biotechnol. 97: 6715-6723. https://doi.org/10.1007/s00253-013-4981-z

Cited by

  1. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis vol.102, pp.20, 2018, https://doi.org/10.1007/s00253-018-9312-y
  2. Efficient and selective adsorption of small polyols by boronic acid functionalized polystyrene adsorbent vol.94, pp.4, 2018, https://doi.org/10.1002/jctb.5879
  3. Comparison of volatile profiles in Fagopyrum esculentum (buckwheat) soksungjang prepared with different starter cultures during fermentation vol.28, pp.4, 2019, https://doi.org/10.1007/s10068-018-00549-6
  4. Microbial production of 2,3-butanediol for industrial applications vol.46, pp.11, 2018, https://doi.org/10.1007/s10295-019-02231-0
  5. Removal of Copper (II) in Aqueous Solution Using Bacillus sp. SRCM 112835 Isolated from Doenjang (Korean Fermented Soy Paste) vol.24, pp.3, 2018, https://doi.org/10.13050/foodengprog.2020.24.3.171
  6. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca vol.19, pp.1, 2020, https://doi.org/10.1186/s12934-020-01420-2
  7. Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis vol.31, pp.2, 2021, https://doi.org/10.4014/jmb.2011.11022
  8. Highly Efficient 2,3-Butanediol Production by Bacillus licheniformis via Complex Optimization of Nutritional and Technological Parameters vol.7, pp.3, 2021, https://doi.org/10.3390/fermentation7030118
  9. Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis vol.26, pp.18, 2018, https://doi.org/10.3390/molecules26185625
  10. New Exopolysaccharides Produced by Bacillus licheniformis 24 Display Substrate-Dependent Content and Antioxidant Activity vol.9, pp.10, 2018, https://doi.org/10.3390/microorganisms9102127
  11. Current Advances in Microbial Production of Acetoin and 2,3-Butanediol by Bacillus spp. vol.7, pp.4, 2018, https://doi.org/10.3390/fermentation7040307